Cargando…

Discovering Engagement Personas in a Digital Diabetes Prevention Program

Digital health technologies are shaping the future of preventive health care. We present a quantitative approach for discovering and characterizing engagement personas: longitudinal engagement patterns in a fully digital diabetes prevention program. We used a two-step approach to discovering engagem...

Descripción completa

Detalles Bibliográficos
Autores principales: Hori, Jonathan H., Sia, Elizabeth X., Lockwood, Kimberly G., Auster-Gussman, Lisa A., Rapoport, Sharon, Branch, OraLee H., Graham, Sarah A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220103/
https://www.ncbi.nlm.nih.gov/pubmed/35735369
http://dx.doi.org/10.3390/bs12060159
_version_ 1784732289589051392
author Hori, Jonathan H.
Sia, Elizabeth X.
Lockwood, Kimberly G.
Auster-Gussman, Lisa A.
Rapoport, Sharon
Branch, OraLee H.
Graham, Sarah A.
author_facet Hori, Jonathan H.
Sia, Elizabeth X.
Lockwood, Kimberly G.
Auster-Gussman, Lisa A.
Rapoport, Sharon
Branch, OraLee H.
Graham, Sarah A.
author_sort Hori, Jonathan H.
collection PubMed
description Digital health technologies are shaping the future of preventive health care. We present a quantitative approach for discovering and characterizing engagement personas: longitudinal engagement patterns in a fully digital diabetes prevention program. We used a two-step approach to discovering engagement personas among n = 1613 users: (1) A univariate clustering method using two unsupervised k-means clustering algorithms on app- and program-feature use separately and (2) A bivariate clustering method that involved comparing cluster labels for each member across app- and program-feature univariate clusters. The univariate analyses revealed five app-feature clusters and four program-feature clusters. The bivariate analysis revealed five unique combinations of these clusters, called engagement personas, which represented 76% of users. These engagement personas differed in both member demographics and weight loss. Exploring engagement personas is beneficial to inform strategies for personalizing the program experience and optimizing engagement in a variety of digital health interventions.
format Online
Article
Text
id pubmed-9220103
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92201032022-06-24 Discovering Engagement Personas in a Digital Diabetes Prevention Program Hori, Jonathan H. Sia, Elizabeth X. Lockwood, Kimberly G. Auster-Gussman, Lisa A. Rapoport, Sharon Branch, OraLee H. Graham, Sarah A. Behav Sci (Basel) Article Digital health technologies are shaping the future of preventive health care. We present a quantitative approach for discovering and characterizing engagement personas: longitudinal engagement patterns in a fully digital diabetes prevention program. We used a two-step approach to discovering engagement personas among n = 1613 users: (1) A univariate clustering method using two unsupervised k-means clustering algorithms on app- and program-feature use separately and (2) A bivariate clustering method that involved comparing cluster labels for each member across app- and program-feature univariate clusters. The univariate analyses revealed five app-feature clusters and four program-feature clusters. The bivariate analysis revealed five unique combinations of these clusters, called engagement personas, which represented 76% of users. These engagement personas differed in both member demographics and weight loss. Exploring engagement personas is beneficial to inform strategies for personalizing the program experience and optimizing engagement in a variety of digital health interventions. MDPI 2022-05-24 /pmc/articles/PMC9220103/ /pubmed/35735369 http://dx.doi.org/10.3390/bs12060159 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Hori, Jonathan H.
Sia, Elizabeth X.
Lockwood, Kimberly G.
Auster-Gussman, Lisa A.
Rapoport, Sharon
Branch, OraLee H.
Graham, Sarah A.
Discovering Engagement Personas in a Digital Diabetes Prevention Program
title Discovering Engagement Personas in a Digital Diabetes Prevention Program
title_full Discovering Engagement Personas in a Digital Diabetes Prevention Program
title_fullStr Discovering Engagement Personas in a Digital Diabetes Prevention Program
title_full_unstemmed Discovering Engagement Personas in a Digital Diabetes Prevention Program
title_short Discovering Engagement Personas in a Digital Diabetes Prevention Program
title_sort discovering engagement personas in a digital diabetes prevention program
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220103/
https://www.ncbi.nlm.nih.gov/pubmed/35735369
http://dx.doi.org/10.3390/bs12060159
work_keys_str_mv AT horijonathanh discoveringengagementpersonasinadigitaldiabetespreventionprogram
AT siaelizabethx discoveringengagementpersonasinadigitaldiabetespreventionprogram
AT lockwoodkimberlyg discoveringengagementpersonasinadigitaldiabetespreventionprogram
AT austergussmanlisaa discoveringengagementpersonasinadigitaldiabetespreventionprogram
AT rapoportsharon discoveringengagementpersonasinadigitaldiabetespreventionprogram
AT branchoraleeh discoveringengagementpersonasinadigitaldiabetespreventionprogram
AT grahamsaraha discoveringengagementpersonasinadigitaldiabetespreventionprogram