Cargando…
Vasoconstrictor and Pressor Effects of Des-Aspartate-Angiotensin I in Rat
This study investigated the vasoactive effects of des-aspartate-angiotensin-I (DAA-I) in male Wistar rats on whole body vascular bed, isolated perfused kidneys, and aortic rings. Dose–response curves to DAA-I were compared with those to angiotensin II (Ang II). The Ang II-type-1 (AT1) receptor block...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220223/ https://www.ncbi.nlm.nih.gov/pubmed/35740253 http://dx.doi.org/10.3390/biomedicines10061230 |
Sumario: | This study investigated the vasoactive effects of des-aspartate-angiotensin-I (DAA-I) in male Wistar rats on whole body vascular bed, isolated perfused kidneys, and aortic rings. Dose–response curves to DAA-I were compared with those to angiotensin II (Ang II). The Ang II-type-1 (AT1) receptor blocker, losartan, was used to evaluate the role of AT1 receptors in the responses to DAA-I. Studies were also conducted of the responsiveness in aortic rings after endothelium removal, nitric oxide synthase inhibition, or AT2 receptor blockade. DAA-I induced a dose-related systemic pressor response that was shifted to the right compared with Ang II. Losartan markedly attenuated the responsiveness to DAA-I. DAA-I showed a similar pattern in renal vasculature and aortic rings. In aortic rings, removal of endothelium and nitric oxide inhibition increased the sensitivity and maximal response to DAA-I and Ang II. AT2 receptor blockade did not significantly affect the responsiveness to DAA-I. According to these findings, DAA-I increases the systemic blood pressure and vascular tone in conductance and resistance vessels via AT1 receptor activation. This vasoconstrictor effect of DAA-I participates in the homeostatic control of arterial pressure, which can also contribute to the pathogenesis of hypertension. DAA-I may therefore be a potential therapeutic target in cardiovascular disease. |
---|