Cargando…

Mechanisms Underlying Antipsychotic-Induced NAFLD and Iron Dysregulation: A Multi-Omic Approach

Atypical antipsychotic (AA) medications are widely prescribed for the treatment of psychiatric disorders, including schizophrenia, bipolar disorder and treatment-resistant depression. AA are associated with myriad metabolic and endocrine side effects, including systemic inflammation, weight gain, dy...

Descripción completa

Detalles Bibliográficos
Autores principales: May, Meghan, Barlow, Deborah, Ibrahim, Radwa, Houseknecht, Karen L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220331/
https://www.ncbi.nlm.nih.gov/pubmed/35740245
http://dx.doi.org/10.3390/biomedicines10061225
Descripción
Sumario:Atypical antipsychotic (AA) medications are widely prescribed for the treatment of psychiatric disorders, including schizophrenia, bipolar disorder and treatment-resistant depression. AA are associated with myriad metabolic and endocrine side effects, including systemic inflammation, weight gain, dyslipidemia and insulin resistance, all of which are associated with increased incidence of non-alcoholic fatty liver disease (NAFLD). NAFLD is highly prevalent in patients with mental illness, and AA have been shown to increase incidence of NAFLD pre-clinically and clinically. However, the underlying mechanisms have not been described. We mined multi-omic datasets from preclinical murine models of sub-chronic risperidone or olanzapine treatment, in vitro exposure of human cells to risperidone and psychiatric patients following onset of aripiprazole therapy focused on pathways associated with the pathophysiology of NAFLD, including iron accumulation, systemic inflammation and dyslipidemia. We identified numerous differentially expressed traits affecting these pathways conserved across study systems and AA medications. We used these findings to propose mechanisms for AA-associated development of NAFLD and dysregulated iron homeostasis.