Cargando…
Antiamoebic Properties of Laboratory and Clinically Used Drugs against Naegleria fowleri and Balamuthia mandrillaris
Naegleria fowleri and Balamuthia mandrillaris are pathogenic free-living amoebae that infect the central nervous system with over 95% mortality rates. Although several compounds have shown promise in vitro but associated side effects and/or prolonged approval processes for clinical applications have...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220410/ https://www.ncbi.nlm.nih.gov/pubmed/35740156 http://dx.doi.org/10.3390/antibiotics11060749 |
_version_ | 1784732368695721984 |
---|---|
author | Siddiqui, Ruqaiyyah Mungroo, Mohammad Ridwane Anuar, Tengku Shahrul Alharbi, Ahmad M. Alfahemi, Hasan Elmoselhi, Adel B. Khan, Naveed Ahmed |
author_facet | Siddiqui, Ruqaiyyah Mungroo, Mohammad Ridwane Anuar, Tengku Shahrul Alharbi, Ahmad M. Alfahemi, Hasan Elmoselhi, Adel B. Khan, Naveed Ahmed |
author_sort | Siddiqui, Ruqaiyyah |
collection | PubMed |
description | Naegleria fowleri and Balamuthia mandrillaris are pathogenic free-living amoebae that infect the central nervous system with over 95% mortality rates. Although several compounds have shown promise in vitro but associated side effects and/or prolonged approval processes for clinical applications have led to limited success. To overcome this, drug repurposing of marketed compounds with known mechanism of action is considered a viable approach that has potential to expedite discovery and application of anti-amoebic compounds. In fact, many of the drugs currently employed in the treatment of N. fowleri and B. mandrillaris, such as amphotericin B, fluconazole, rifampin and miltefosine, are repurposed drugs. Here, we evaluated a range of clinical and laboratory compounds including metformin, quinclorac, indaziflam, inositol, nateglinide, 2,6-DNBT, trans-cinnamic acid, terbuthylazine, acarbose, glimepiride, vildagliptin, cellulase, thaxtomin A, repaglinide and dimethyl peptidase (IV) inhibitor against N. fowleri and B. mandrillaris. Anti-amoebic assays revealed that indaziflam, nateglinide, 2,6-DNBT, terbuthylazine, acarbose and glimepiride exhibited potent amoebicidal properties against both N. fowleri and B. mandrillaris. Notably, all compounds tested showed minimal human (HaCaT) cell cytotoxicity as determined by lactate dehydrogenase release. Prospective research using animal models is warranted to determine the potential of these repurposed compounds, as well as the need for investigating the intranasal route of delivery to treat these devastating infections. |
format | Online Article Text |
id | pubmed-9220410 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92204102022-06-24 Antiamoebic Properties of Laboratory and Clinically Used Drugs against Naegleria fowleri and Balamuthia mandrillaris Siddiqui, Ruqaiyyah Mungroo, Mohammad Ridwane Anuar, Tengku Shahrul Alharbi, Ahmad M. Alfahemi, Hasan Elmoselhi, Adel B. Khan, Naveed Ahmed Antibiotics (Basel) Article Naegleria fowleri and Balamuthia mandrillaris are pathogenic free-living amoebae that infect the central nervous system with over 95% mortality rates. Although several compounds have shown promise in vitro but associated side effects and/or prolonged approval processes for clinical applications have led to limited success. To overcome this, drug repurposing of marketed compounds with known mechanism of action is considered a viable approach that has potential to expedite discovery and application of anti-amoebic compounds. In fact, many of the drugs currently employed in the treatment of N. fowleri and B. mandrillaris, such as amphotericin B, fluconazole, rifampin and miltefosine, are repurposed drugs. Here, we evaluated a range of clinical and laboratory compounds including metformin, quinclorac, indaziflam, inositol, nateglinide, 2,6-DNBT, trans-cinnamic acid, terbuthylazine, acarbose, glimepiride, vildagliptin, cellulase, thaxtomin A, repaglinide and dimethyl peptidase (IV) inhibitor against N. fowleri and B. mandrillaris. Anti-amoebic assays revealed that indaziflam, nateglinide, 2,6-DNBT, terbuthylazine, acarbose and glimepiride exhibited potent amoebicidal properties against both N. fowleri and B. mandrillaris. Notably, all compounds tested showed minimal human (HaCaT) cell cytotoxicity as determined by lactate dehydrogenase release. Prospective research using animal models is warranted to determine the potential of these repurposed compounds, as well as the need for investigating the intranasal route of delivery to treat these devastating infections. MDPI 2022-05-31 /pmc/articles/PMC9220410/ /pubmed/35740156 http://dx.doi.org/10.3390/antibiotics11060749 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Siddiqui, Ruqaiyyah Mungroo, Mohammad Ridwane Anuar, Tengku Shahrul Alharbi, Ahmad M. Alfahemi, Hasan Elmoselhi, Adel B. Khan, Naveed Ahmed Antiamoebic Properties of Laboratory and Clinically Used Drugs against Naegleria fowleri and Balamuthia mandrillaris |
title | Antiamoebic Properties of Laboratory and Clinically Used Drugs against Naegleria fowleri and Balamuthia mandrillaris |
title_full | Antiamoebic Properties of Laboratory and Clinically Used Drugs against Naegleria fowleri and Balamuthia mandrillaris |
title_fullStr | Antiamoebic Properties of Laboratory and Clinically Used Drugs against Naegleria fowleri and Balamuthia mandrillaris |
title_full_unstemmed | Antiamoebic Properties of Laboratory and Clinically Used Drugs against Naegleria fowleri and Balamuthia mandrillaris |
title_short | Antiamoebic Properties of Laboratory and Clinically Used Drugs against Naegleria fowleri and Balamuthia mandrillaris |
title_sort | antiamoebic properties of laboratory and clinically used drugs against naegleria fowleri and balamuthia mandrillaris |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220410/ https://www.ncbi.nlm.nih.gov/pubmed/35740156 http://dx.doi.org/10.3390/antibiotics11060749 |
work_keys_str_mv | AT siddiquiruqaiyyah antiamoebicpropertiesoflaboratoryandclinicallyuseddrugsagainstnaegleriafowleriandbalamuthiamandrillaris AT mungroomohammadridwane antiamoebicpropertiesoflaboratoryandclinicallyuseddrugsagainstnaegleriafowleriandbalamuthiamandrillaris AT anuartengkushahrul antiamoebicpropertiesoflaboratoryandclinicallyuseddrugsagainstnaegleriafowleriandbalamuthiamandrillaris AT alharbiahmadm antiamoebicpropertiesoflaboratoryandclinicallyuseddrugsagainstnaegleriafowleriandbalamuthiamandrillaris AT alfahemihasan antiamoebicpropertiesoflaboratoryandclinicallyuseddrugsagainstnaegleriafowleriandbalamuthiamandrillaris AT elmoselhiadelb antiamoebicpropertiesoflaboratoryandclinicallyuseddrugsagainstnaegleriafowleriandbalamuthiamandrillaris AT khannaveedahmed antiamoebicpropertiesoflaboratoryandclinicallyuseddrugsagainstnaegleriafowleriandbalamuthiamandrillaris |