Cargando…

Beyond the Backbone: The Next Generation of Pathwalking Utilities for Model Building in CryoEM Density Maps

Single-particle electron cryomicroscopy (cryoEM) has become an indispensable tool for studying structure and function in macromolecular assemblies. As an integral part of the cryoEM structure determination process, computational tools have been developed to build atomic models directly from a densit...

Descripción completa

Detalles Bibliográficos
Autores principales: Hryc, Corey F., Baker, Matthew L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220806/
https://www.ncbi.nlm.nih.gov/pubmed/35740898
http://dx.doi.org/10.3390/biom12060773
Descripción
Sumario:Single-particle electron cryomicroscopy (cryoEM) has become an indispensable tool for studying structure and function in macromolecular assemblies. As an integral part of the cryoEM structure determination process, computational tools have been developed to build atomic models directly from a density map without structural templates. Nearly a decade ago, we created Pathwalking, a tool for de novo modeling of protein structure in near-atomic resolution cryoEM density maps. Here, we present the latest developments in Pathwalking, including the addition of probabilistic models, as well as a companion tool for modeling waters and ligands. This software was evaluated on the 2021 CryoEM Ligand Challenge density maps, in addition to identifying ligands in three IP(3)R1 density maps at ~3 Å to 4.1 Å resolution. The results clearly demonstrate that the Pathwalking de novo modeling pipeline can construct accurate protein structures and reliably localize and identify ligand density directly from a near-atomic resolution map.