Cargando…

Exploring the Binding Capacity of Mycelium and Wood-Based Composites for Use in Construction

Existing research on mycelium-based materials recognizes the binding capacity of fungal hyphae. Fungal hyphae digest and bond to the surface of the substrate, form entangled networks, and enhance the mechanical strength of mycelium-based composites. This investigation was driven by the results of an...

Descripción completa

Detalles Bibliográficos
Autores principales: Saez, Dana, Grizmann, Denis, Trautz, Martin, Werner, Anett
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220814/
https://www.ncbi.nlm.nih.gov/pubmed/35735594
http://dx.doi.org/10.3390/biomimetics7020078
Descripción
Sumario:Existing research on mycelium-based materials recognizes the binding capacity of fungal hyphae. Fungal hyphae digest and bond to the surface of the substrate, form entangled networks, and enhance the mechanical strength of mycelium-based composites. This investigation was driven by the results of an ongoing project, where we attempt to provide basic concepts for a broad application of a mycelium and chipped wood composite for building components. Simultaneously, we further explore the binding capacity of mycelium and chipped wood composites with a series of experiments involving different mechanical interlocking patterns. Although the matrix material was analyzed on a micro-scale, the samples were developed on a meso-scale to enhance the bonding surface. The meso-scale allows exploring the potential of the bio-based material for use in novel construction systems. The outcome of this study provides a better understanding of the material and geometrical features of mycelium-based building elements.