Cargando…
Strained Ammonium Precursors for Radiofluorinations
The increasing application of positron emission tomography (PET) in nuclear medicine has stimulated the extensive development of a multitude of novel and versatile techniques to introduce fluorine‐18, especially for the radiolabelling of biologically or pharmacologically active molecules. Taking int...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220932/ https://www.ncbi.nlm.nih.gov/pubmed/35736542 http://dx.doi.org/10.1002/open.202200039 |
Sumario: | The increasing application of positron emission tomography (PET) in nuclear medicine has stimulated the extensive development of a multitude of novel and versatile techniques to introduce fluorine‐18, especially for the radiolabelling of biologically or pharmacologically active molecules. Taking into consideration that the introduction of fluorine‐18 (t(1/2)=109.8 min) mostly proceeds under harsh conditions, radiolabelling of such molecules represents a challenge and is of enormous interest. Ideally, it should proceed in a regioselective manner under mild physiological conditions, in an acceptable time span, with high yields and high specific activities. Special attention has been drawn to 2‐fluoroethyl and 3‐fluoropropyl groups, which are often the active sites of radiofluorinated compounds. Precursors containing an ammonium leaving group – such as a strained azetidinium or aziridinium moiety – can help to overcome these obstacles leading to a convenient and mild introduction of [(18)F]fluoride with high radiochemical yields. |
---|