Cargando…

Strained Ammonium Precursors for Radiofluorinations

The increasing application of positron emission tomography (PET) in nuclear medicine has stimulated the extensive development of a multitude of novel and versatile techniques to introduce fluorine‐18, especially for the radiolabelling of biologically or pharmacologically active molecules. Taking int...

Descripción completa

Detalles Bibliográficos
Autores principales: Reissig, Falco, Mamat, Constantin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220932/
https://www.ncbi.nlm.nih.gov/pubmed/35736542
http://dx.doi.org/10.1002/open.202200039
Descripción
Sumario:The increasing application of positron emission tomography (PET) in nuclear medicine has stimulated the extensive development of a multitude of novel and versatile techniques to introduce fluorine‐18, especially for the radiolabelling of biologically or pharmacologically active molecules. Taking into consideration that the introduction of fluorine‐18 (t(1/2)=109.8 min) mostly proceeds under harsh conditions, radiolabelling of such molecules represents a challenge and is of enormous interest. Ideally, it should proceed in a regioselective manner under mild physiological conditions, in an acceptable time span, with high yields and high specific activities. Special attention has been drawn to 2‐fluoroethyl and 3‐fluoropropyl groups, which are often the active sites of radiofluorinated compounds. Precursors containing an ammonium leaving group – such as a strained azetidinium or aziridinium moiety – can help to overcome these obstacles leading to a convenient and mild introduction of [(18)F]fluoride with high radiochemical yields.