Cargando…

Cardiac–Brain Dynamics Depend on Context Familiarity and Their Interaction Predicts Experience of Emotional Arousal

Our brain continuously interacts with the body as we engage with the world. Although we are mostly unaware of internal bodily processes, such as our heartbeats, they may be influenced by and in turn influence our perception and emotional feelings. Although there is a recent focus on understanding ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Mishra, Sudhakar, Srinivasan, Narayanan, Tiwary, Uma Shanker
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220998/
https://www.ncbi.nlm.nih.gov/pubmed/35741588
http://dx.doi.org/10.3390/brainsci12060702
Descripción
Sumario:Our brain continuously interacts with the body as we engage with the world. Although we are mostly unaware of internal bodily processes, such as our heartbeats, they may be influenced by and in turn influence our perception and emotional feelings. Although there is a recent focus on understanding cardiac interoceptive activity and interaction with brain activity during emotion processing, the investigation of cardiac–brain interactions with more ecologically valid naturalistic emotional stimuli is still very limited. We also do not understand how an essential aspect of emotions, such as context familiarity, influences affective feelings and is linked to statistical interaction between cardiac and brain activity. Hence, to answer these questions, we designed an exploratory study by recording ECG and EEG signals for the emotional events while participants were watching emotional movie clips. Participants also rated their familiarity with the stimulus on the familiarity scale. Linear mixed effect modelling was performed in which the ECG power and familiarity were considered as predictors of EEG power. We focused on three brain regions, including prefrontal (PF), frontocentral (FC) and parietooccipital (PO). The analyses showed that the interaction between the power of cardiac activity in the mid-frequency range and the power in specific EEG bands is dependent on familiarity, such that the interaction is stronger with high familiarity. In addition, the results indicate that arousal is predicted by cardiac–brain interaction, which also depends on familiarity. The results support emotional theories that emphasize context dependency and interoception. Multimodal studies with more realistic stimuli would further enable us to understand and predict different aspects of emotional experience.