Cargando…
A Pragmatic Machine Learning Approach to Quantify Tumor-Infiltrating Lymphocytes in Whole Slide Images
SIMPLE SUMMARY: Tumor tissues sampled from patients contain prognostic and predictive information beyond what is currently being used in clinical practice. Large-scale digitization enables new ways of exploiting this information. The most promising analysis pipelines include deep learning/artificial...
Autores principales: | Shvetsov, Nikita, Grønnesby, Morten, Pedersen, Edvard, Møllersen, Kajsa, Busund, Lill-Tove Rasmussen, Schwienbacher, Ruth, Bongo, Lars Ailo, Kilvaer, Thomas Karsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221016/ https://www.ncbi.nlm.nih.gov/pubmed/35740648 http://dx.doi.org/10.3390/cancers14122974 |
Ejemplares similares
-
Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
por: Voets, Mike, et al.
Publicado: (2019) -
High expression of microRNA-126 relates to favorable prognosis for colon cancer patients
por: Selven, Hallgeir, et al.
Publicado: (2021) -
High expression of miR-17-5p and miR-20a-5p predicts favorable disease-specific survival in stage I-III colon cancer
por: Selven, Hallgeir, et al.
Publicado: (2022) -
High Expression of IRS-1, RUNX3 and SMAD4 Are Positive Prognostic Factors in Stage I–III Colon Cancer
por: Selven, Hallgeir, et al.
Publicado: (2023) -
Digitally quantified CD8(+) cells: the best candidate marker for an immune cell score in non-small cell lung cancer?
por: Kilvaer, Thomas K, et al.
Publicado: (2020)