Cargando…
A Novel 2-Metagene Signature to Identify High-Risk HNSCC Patients amongst Those Who Are Clinically at Intermediate Risk and Are Treated with PORT
SIMPLE SUMMARY: The aim of this matched-pair study including patients with locally advanced head and neck squamous cell carcinoma (HNSCC) was to identify patients who are biologically at high risk for the development of loco–regional recurrences after surgery and postoperative radiotherapy (PORT) bu...
Autores principales: | Patil, Shivaprasad, Linge, Annett, Hiepe, Hannah, Grosser, Marianne, Lohaus, Fabian, Gudziol, Volker, Kemper, Max, Nowak, Alexander, Haim, Dominik, Tinhofer, Inge, Budach, Volker, Guberina, Maja, Stuschke, Martin, Balermpas, Panagiotis, von der Grün, Jens, Schäfer, Henning, Grosu, Anca-Ligia, Abdollahi, Amir, Debus, Jürgen, Ganswindt, Ute, Belka, Claus, Pigorsch, Steffi, Combs, Stephanie E., Boeke, Simon, Zips, Daniel, Jöhrens, Korinna, Baretton, Gustavo B., Baumann, Michael, Krause, Mechthild, Löck, Steffen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221048/ https://www.ncbi.nlm.nih.gov/pubmed/35740697 http://dx.doi.org/10.3390/cancers14123031 |
Ejemplares similares
-
Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC
por: Rabasco Meneghetti, Asier, et al.
Publicado: (2022) -
Comprehensive Analysis of Tumour Sub-Volumes for Radiomic Risk Modelling in Locally Advanced HNSCC
por: Leger, Stefan, et al.
Publicado: (2020) -
Correction: ERCC2 gene single-nucleotide polymorphism as a prognostic factor for locally advanced head and neck carcinomas after definitive cisplatin-based radiochemotherapy
por: Guberina, Maja, et al.
Publicado: (2020) -
ERCC2 gene single-nucleotide polymorphism as a prognostic factor for locally advanced head and neck carcinomas after definitive cisplatin-based radiochemotherapy
por: Guberina, Maja, et al.
Publicado: (2020) -
A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
por: Leger, Stefan, et al.
Publicado: (2017)