Cargando…

Cosuppression of NF-κB and AICDA Overcomes Acquired EGFR-TKI Resistance in Non-Small Cell Lung Cancer

SIMPLE SUMMARY: Since the first discovery of EGFR-tyrosine kinase inhibitors (TKIs), they have become the gold standard treatment for EGFR-mutated non-small cell lung cancer. However, the inevitable acquisition of secondary TKI resistance after treatment with TKIs remains an unresolved issue. Here,...

Descripción completa

Detalles Bibliográficos
Autores principales: Yeo, Min-Kyung, Kim, Yoonjoo, Lee, Da Hye, Chung, Chaeuk, Bae, Go Eun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221089/
https://www.ncbi.nlm.nih.gov/pubmed/35740609
http://dx.doi.org/10.3390/cancers14122940
Descripción
Sumario:SIMPLE SUMMARY: Since the first discovery of EGFR-tyrosine kinase inhibitors (TKIs), they have become the gold standard treatment for EGFR-mutated non-small cell lung cancer. However, the inevitable acquisition of secondary TKI resistance after treatment with TKIs remains an unresolved issue. Here, we evaluated the expression of NF-κB, AICDA, Akt, IL-6, Jak2, and Stat3 by EGFR-TKI-resistant lung adenocarcinoma (LAC), and found that NF-κB and AICDA are major players in the acquired resistance of lung cancer to TKIs. Therefore, treatment with an EGFR-TKI plus cosuppression of NF-κB and AICDA may be a promising strategy to overcome EGFR-TKI resistance in LACs. ABSTRACT: Background: Acquired resistance after EGFR-tyrosine kinase inhibitor (TKI) treatment is the rule rather than the exception. Overcoming resistance to EGFR-TKIs is essential if we are to develop better therapeutic strategies for lung cancer patients. Here, we examine the effector signaling pathways underlying TKI resistance and propose targets to overcome the resistance of lung adenocarcinoma (LAC) to TKI. Methods: We compared the expression of NF-κB, AICDA, Akt, IL-6, Jak2, and Stat3 by EGFR-TKI-resistant and EGFR-TKI-sensitive LAC cell lines, and by LAC patients treated with EGFR-TKIs; we then evaluated links between expression and treatment responses. We also examined the therapeutic effects of NF-κB and AICDA inhibition in EGFR-TKI-resistant LACs. Results: NF-κB and AICDA were more expressed by EGFR-TKI-resistant LACs than by EGFR-TKI-sensitive LACs. EGFR-TKIs induced a dose-dependent increase in the expression of NF-κB, AICDA, and IL-6. Inhibition of NF-κB suppressed the expression of AICDA, Akt, and IL-6 in EGFR-TKI-resistant and EGFR-TKI-sensitive LACs, whereas knockdown of AICDA suppressed the expression of NF-κB and Akt in both cell types. Treating EGFR-TKI-resistant LACs with an EGFR-TKI, alongside cosuppression of NF-κB and AICDA, had a significant therapeutic effect. Conclusion: Treatment with an EGFR-TKI plus cosuppression of NF-κB and AICDA may be a promising strategy to overcome EGFR-TKI resistance in LACs.