Cargando…

Inhibitory Control and Brain–Heart Interaction: An HRV-EEG Study

Background: Motor inhibition is a complex cognitive function regulated by specific brain regions and influenced by the activity of the Central Autonomic Network. We investigate the two-way Brain–Heart interaction during a Go/NoGo task. Spectral EEG ϑ, α powerbands, and HRV parameters (Complexity Ind...

Descripción completa

Detalles Bibliográficos
Autores principales: Cortese, Maria Daniela, Vatrano, Martina, Tonin, Paolo, Cerasa, Antonio, Riganello, Francesco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221218/
https://www.ncbi.nlm.nih.gov/pubmed/35741625
http://dx.doi.org/10.3390/brainsci12060740
Descripción
Sumario:Background: Motor inhibition is a complex cognitive function regulated by specific brain regions and influenced by the activity of the Central Autonomic Network. We investigate the two-way Brain–Heart interaction during a Go/NoGo task. Spectral EEG ϑ, α powerbands, and HRV parameters (Complexity Index (CI), Low Frequency (LF) and High Frequency (HF) powers) were recorded. Methods: Fourteen healthy volunteers were enrolled. We used a modified version of the classical Go/NoGo task, based on Rule Shift Cards, characterized by a baseline and two different tasks of different complexity. The participants were divided into subjects with Good (GP) and Poor (PP) performances. Results: In the baseline, CI was negatively correlated with α/ϑ. In task 1, the CI was negatively correlated with the errors and α/ϑ, while the errors were positively correlated with α/ϑ. In task 2, CI was negatively correlated with the Reaction Time and positively with α, and the errors were negatively correlated with the Reaction Time and positively correlated with α/ϑ. The GP group showed, at baseline, a negative correlation between CI and α/ϑ. Conclusions: We provide a new combined Brain–Heart model underlying inhibitory control abilities. The results are consistent with the complementary role of α and ϑ oscillations in cognitive control.