Cargando…

FECC-Net: A Novel Feature Enhancement and Context Capture Network Based on Brain MRI Images for Lesion Segmentation

In recent years, the increasing incidence of morbidity of brain stroke has made fast and accurate segmentation of lesion areas from brain MRI images important. With the development of deep learning, segmentation methods based on the computer have become a solution to assist clinicians in early diagn...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Zhaohong, Zhang, Xiangchen, Song, Yehua, Cai, Guorong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221241/
https://www.ncbi.nlm.nih.gov/pubmed/35741650
http://dx.doi.org/10.3390/brainsci12060765
_version_ 1784732572246343680
author Huang, Zhaohong
Zhang, Xiangchen
Song, Yehua
Cai, Guorong
author_facet Huang, Zhaohong
Zhang, Xiangchen
Song, Yehua
Cai, Guorong
author_sort Huang, Zhaohong
collection PubMed
description In recent years, the increasing incidence of morbidity of brain stroke has made fast and accurate segmentation of lesion areas from brain MRI images important. With the development of deep learning, segmentation methods based on the computer have become a solution to assist clinicians in early diagnosis and treatment planning. Nevertheless, the variety of lesion sizes in brain MRI images and the roughness of the boundary of the lesion pose challenges to the accuracy of the segmentation algorithm. Current mainstream medical segmentation models are not able to solve these challenges due to their insufficient use of image features and context information. This paper proposes a novel feature enhancement and context capture network (FECC-Net), which is mainly composed of an atrous spatial pyramid pooling (ASPP) module and an enhanced encoder. In particular, the ASPP model uses parallel convolution operations with different sampling rates to enrich multi-scale features and fully capture image context information in order to process lesions of different sizes. The enhanced encoder obtains deep semantic features and shallow boundary features in the feature extraction process to achieve image feature enhancement, which is helpful for restoration of the lesion boundaries. We divide the pathological image into three levels according to the number of pixels in the real mask area and evaluate FECC-Net on an open dataset called Anatomical Tracings of Lesions After Stroke (ATLAS). The experimental results show that our FECC-Net outperforms mainstream methods, such as DoubleU-Net and TransUNet. Especially in small target tasks, FECC-Net is 4.09% ahead of DoubleU-Net on the main indicator DSC. Therefore, FECC-Net is encouraging and can be relied upon for brain MRI image applications.
format Online
Article
Text
id pubmed-9221241
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92212412022-06-24 FECC-Net: A Novel Feature Enhancement and Context Capture Network Based on Brain MRI Images for Lesion Segmentation Huang, Zhaohong Zhang, Xiangchen Song, Yehua Cai, Guorong Brain Sci Article In recent years, the increasing incidence of morbidity of brain stroke has made fast and accurate segmentation of lesion areas from brain MRI images important. With the development of deep learning, segmentation methods based on the computer have become a solution to assist clinicians in early diagnosis and treatment planning. Nevertheless, the variety of lesion sizes in brain MRI images and the roughness of the boundary of the lesion pose challenges to the accuracy of the segmentation algorithm. Current mainstream medical segmentation models are not able to solve these challenges due to their insufficient use of image features and context information. This paper proposes a novel feature enhancement and context capture network (FECC-Net), which is mainly composed of an atrous spatial pyramid pooling (ASPP) module and an enhanced encoder. In particular, the ASPP model uses parallel convolution operations with different sampling rates to enrich multi-scale features and fully capture image context information in order to process lesions of different sizes. The enhanced encoder obtains deep semantic features and shallow boundary features in the feature extraction process to achieve image feature enhancement, which is helpful for restoration of the lesion boundaries. We divide the pathological image into three levels according to the number of pixels in the real mask area and evaluate FECC-Net on an open dataset called Anatomical Tracings of Lesions After Stroke (ATLAS). The experimental results show that our FECC-Net outperforms mainstream methods, such as DoubleU-Net and TransUNet. Especially in small target tasks, FECC-Net is 4.09% ahead of DoubleU-Net on the main indicator DSC. Therefore, FECC-Net is encouraging and can be relied upon for brain MRI image applications. MDPI 2022-06-11 /pmc/articles/PMC9221241/ /pubmed/35741650 http://dx.doi.org/10.3390/brainsci12060765 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Huang, Zhaohong
Zhang, Xiangchen
Song, Yehua
Cai, Guorong
FECC-Net: A Novel Feature Enhancement and Context Capture Network Based on Brain MRI Images for Lesion Segmentation
title FECC-Net: A Novel Feature Enhancement and Context Capture Network Based on Brain MRI Images for Lesion Segmentation
title_full FECC-Net: A Novel Feature Enhancement and Context Capture Network Based on Brain MRI Images for Lesion Segmentation
title_fullStr FECC-Net: A Novel Feature Enhancement and Context Capture Network Based on Brain MRI Images for Lesion Segmentation
title_full_unstemmed FECC-Net: A Novel Feature Enhancement and Context Capture Network Based on Brain MRI Images for Lesion Segmentation
title_short FECC-Net: A Novel Feature Enhancement and Context Capture Network Based on Brain MRI Images for Lesion Segmentation
title_sort fecc-net: a novel feature enhancement and context capture network based on brain mri images for lesion segmentation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221241/
https://www.ncbi.nlm.nih.gov/pubmed/35741650
http://dx.doi.org/10.3390/brainsci12060765
work_keys_str_mv AT huangzhaohong feccnetanovelfeatureenhancementandcontextcapturenetworkbasedonbrainmriimagesforlesionsegmentation
AT zhangxiangchen feccnetanovelfeatureenhancementandcontextcapturenetworkbasedonbrainmriimagesforlesionsegmentation
AT songyehua feccnetanovelfeatureenhancementandcontextcapturenetworkbasedonbrainmriimagesforlesionsegmentation
AT caiguorong feccnetanovelfeatureenhancementandcontextcapturenetworkbasedonbrainmriimagesforlesionsegmentation