Cargando…
FECC-Net: A Novel Feature Enhancement and Context Capture Network Based on Brain MRI Images for Lesion Segmentation
In recent years, the increasing incidence of morbidity of brain stroke has made fast and accurate segmentation of lesion areas from brain MRI images important. With the development of deep learning, segmentation methods based on the computer have become a solution to assist clinicians in early diagn...
Autores principales: | Huang, Zhaohong, Zhang, Xiangchen, Song, Yehua, Cai, Guorong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221241/ https://www.ncbi.nlm.nih.gov/pubmed/35741650 http://dx.doi.org/10.3390/brainsci12060765 |
Ejemplares similares
-
Fully Exposed Cluster Catalyst (FECC): Toward Rich
Surface Sites and Full Atom Utilization Efficiency
por: Peng, Mi, et al.
Publicado: (2020) -
FFU-Net: Feature Fusion U-Net for Lesion Segmentation of Diabetic Retinopathy
por: Xu, Yifei, et al.
Publicado: (2021) -
Triplanar U-Net with lesion-wise voting for the segmentation of new lesions on longitudinal MRI studies
por: Hitziger, Sebastian, et al.
Publicado: (2022) -
FAC-Net: Feedback Attention Network Based on Context Encoder Network for Skin Lesion Segmentation
por: Dong, Yuying, et al.
Publicado: (2021) -
Brain SegNet: 3D local refinement network for brain lesion segmentation
por: Hu, Xiaojun, et al.
Publicado: (2020)