Cargando…

A Brief Introduction to Magnetoencephalography (MEG) and Its Clinical Applications

Magnetoencephalography (MEG) plays a pivotal role in the diagnosis of brain disorders. In this review, we have investigated potential MEG applications for analysing brain disorders. The signal-to-noise ratio (SNR(MEG) = 2.2 db, SNR(EEG) < 1 db) and spatial resolution (SR(MEG) = 2–3 mm, SR(EEG) =...

Descripción completa

Detalles Bibliográficos
Autores principales: Fred, Alfred Lenin, Kumar, Subbiahpillai Neelakantapillai, Kumar Haridhas, Ajay, Ghosh, Sayantan, Purushothaman Bhuvana, Harishita, Sim, Wei Khang Jeremy, Vimalan, Vijayaragavan, Givo, Fredin Arun Sedly, Jousmäki, Veikko, Padmanabhan, Parasuraman, Gulyás, Balázs
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221302/
https://www.ncbi.nlm.nih.gov/pubmed/35741673
http://dx.doi.org/10.3390/brainsci12060788
_version_ 1784732587849154560
author Fred, Alfred Lenin
Kumar, Subbiahpillai Neelakantapillai
Kumar Haridhas, Ajay
Ghosh, Sayantan
Purushothaman Bhuvana, Harishita
Sim, Wei Khang Jeremy
Vimalan, Vijayaragavan
Givo, Fredin Arun Sedly
Jousmäki, Veikko
Padmanabhan, Parasuraman
Gulyás, Balázs
author_facet Fred, Alfred Lenin
Kumar, Subbiahpillai Neelakantapillai
Kumar Haridhas, Ajay
Ghosh, Sayantan
Purushothaman Bhuvana, Harishita
Sim, Wei Khang Jeremy
Vimalan, Vijayaragavan
Givo, Fredin Arun Sedly
Jousmäki, Veikko
Padmanabhan, Parasuraman
Gulyás, Balázs
author_sort Fred, Alfred Lenin
collection PubMed
description Magnetoencephalography (MEG) plays a pivotal role in the diagnosis of brain disorders. In this review, we have investigated potential MEG applications for analysing brain disorders. The signal-to-noise ratio (SNR(MEG) = 2.2 db, SNR(EEG) < 1 db) and spatial resolution (SR(MEG) = 2–3 mm, SR(EEG) = 7–10 mm) is higher for MEG than EEG, thus MEG potentially facilitates accurate monitoring of cortical activity. We found that the direct electrophysiological MEG signals reflected the physiological status of neurological disorders and play a vital role in disease diagnosis. Single-channel connectivity, as well as brain network analysis, using MEG data acquired during resting state and a given task has been used for the diagnosis of neurological disorders such as epilepsy, Alzheimer’s, Parkinsonism, autism, and schizophrenia. The workflow of MEG and its potential applications in the diagnosis of disease and therapeutic planning are also discussed. We forecast that computer-aided algorithms will play a prominent role in the diagnosis and prediction of neurological diseases in the future. The outcome of this narrative review will aid researchers to utilise MEG in diagnostics.
format Online
Article
Text
id pubmed-9221302
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92213022022-06-24 A Brief Introduction to Magnetoencephalography (MEG) and Its Clinical Applications Fred, Alfred Lenin Kumar, Subbiahpillai Neelakantapillai Kumar Haridhas, Ajay Ghosh, Sayantan Purushothaman Bhuvana, Harishita Sim, Wei Khang Jeremy Vimalan, Vijayaragavan Givo, Fredin Arun Sedly Jousmäki, Veikko Padmanabhan, Parasuraman Gulyás, Balázs Brain Sci Review Magnetoencephalography (MEG) plays a pivotal role in the diagnosis of brain disorders. In this review, we have investigated potential MEG applications for analysing brain disorders. The signal-to-noise ratio (SNR(MEG) = 2.2 db, SNR(EEG) < 1 db) and spatial resolution (SR(MEG) = 2–3 mm, SR(EEG) = 7–10 mm) is higher for MEG than EEG, thus MEG potentially facilitates accurate monitoring of cortical activity. We found that the direct electrophysiological MEG signals reflected the physiological status of neurological disorders and play a vital role in disease diagnosis. Single-channel connectivity, as well as brain network analysis, using MEG data acquired during resting state and a given task has been used for the diagnosis of neurological disorders such as epilepsy, Alzheimer’s, Parkinsonism, autism, and schizophrenia. The workflow of MEG and its potential applications in the diagnosis of disease and therapeutic planning are also discussed. We forecast that computer-aided algorithms will play a prominent role in the diagnosis and prediction of neurological diseases in the future. The outcome of this narrative review will aid researchers to utilise MEG in diagnostics. MDPI 2022-06-15 /pmc/articles/PMC9221302/ /pubmed/35741673 http://dx.doi.org/10.3390/brainsci12060788 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Fred, Alfred Lenin
Kumar, Subbiahpillai Neelakantapillai
Kumar Haridhas, Ajay
Ghosh, Sayantan
Purushothaman Bhuvana, Harishita
Sim, Wei Khang Jeremy
Vimalan, Vijayaragavan
Givo, Fredin Arun Sedly
Jousmäki, Veikko
Padmanabhan, Parasuraman
Gulyás, Balázs
A Brief Introduction to Magnetoencephalography (MEG) and Its Clinical Applications
title A Brief Introduction to Magnetoencephalography (MEG) and Its Clinical Applications
title_full A Brief Introduction to Magnetoencephalography (MEG) and Its Clinical Applications
title_fullStr A Brief Introduction to Magnetoencephalography (MEG) and Its Clinical Applications
title_full_unstemmed A Brief Introduction to Magnetoencephalography (MEG) and Its Clinical Applications
title_short A Brief Introduction to Magnetoencephalography (MEG) and Its Clinical Applications
title_sort brief introduction to magnetoencephalography (meg) and its clinical applications
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221302/
https://www.ncbi.nlm.nih.gov/pubmed/35741673
http://dx.doi.org/10.3390/brainsci12060788
work_keys_str_mv AT fredalfredlenin abriefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT kumarsubbiahpillaineelakantapillai abriefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT kumarharidhasajay abriefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT ghoshsayantan abriefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT purushothamanbhuvanaharishita abriefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT simweikhangjeremy abriefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT vimalanvijayaragavan abriefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT givofredinarunsedly abriefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT jousmakiveikko abriefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT padmanabhanparasuraman abriefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT gulyasbalazs abriefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT fredalfredlenin briefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT kumarsubbiahpillaineelakantapillai briefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT kumarharidhasajay briefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT ghoshsayantan briefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT purushothamanbhuvanaharishita briefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT simweikhangjeremy briefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT vimalanvijayaragavan briefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT givofredinarunsedly briefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT jousmakiveikko briefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT padmanabhanparasuraman briefintroductiontomagnetoencephalographymeganditsclinicalapplications
AT gulyasbalazs briefintroductiontomagnetoencephalographymeganditsclinicalapplications