Cargando…
StarDist Image Segmentation Improves Circulating Tumor Cell Detection
SIMPLE SUMMARY: Automated enumeration of circulating tumor cells (CTC) from immunofluorescence images starts with a selection of areas containing potential CTC. The CellSearch system has a built-in selection algorithm that has been observed to fail in samples with high cell density, thereby underest...
Autores principales: | Stevens, Michiel, Nanou, Afroditi, Terstappen, Leon W. M. M., Driemel, Christiane, Stoecklein, Nikolas H., Coumans, Frank A. W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221404/ https://www.ncbi.nlm.nih.gov/pubmed/35740582 http://dx.doi.org/10.3390/cancers14122916 |
Ejemplares similares
-
Automated cell tracking using StarDist and TrackMate
por: Fazeli, Elnaz, et al.
Publicado: (2020) -
Deep Learning-Based Automatic Duckweed Counting Using StarDist and Its Application on Measuring Growth Inhibition Potential of Rare Earth Elements as Contaminants of Emerging Concerns
por: Kurnia, Kevin Adi, et al.
Publicado: (2023) -
Endothelium-Derived Extracellular Vesicles Associate with Poor Prognosis in Metastatic Colorectal Cancer
por: Nanou, Afroditi, et al.
Publicado: (2020) -
Scanning Electron Microscopy of Circulating Tumor Cells and Tumor-Derived Extracellular Vesicles
por: Nanou, Afroditi, et al.
Publicado: (2018) -
Label-Free Prostate Cancer Detection by Characterization
of Extracellular Vesicles Using Raman Spectroscopy
por: Lee, Wooje, et al.
Publicado: (2018)