Cargando…

Quantification of Desiccated Extracellular Vesicles by Quartz Crystal Microbalance

Extracellular vesicle (EV) quantification is a procedure through which the biomedical potential of EVs can be used and their biological function can be understood. The number of EVs isolated from cell culture media depends on the cell status and is especially important in studies on cell-to-cell sig...

Descripción completa

Detalles Bibliográficos
Autores principales: Chernyshev, Vasiliy S., Skliar, Mikhail
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221410/
https://www.ncbi.nlm.nih.gov/pubmed/35735519
http://dx.doi.org/10.3390/bios12060371
Descripción
Sumario:Extracellular vesicle (EV) quantification is a procedure through which the biomedical potential of EVs can be used and their biological function can be understood. The number of EVs isolated from cell culture media depends on the cell status and is especially important in studies on cell-to-cell signaling, disease modeling, drug development, etc. Currently, the methods that can be used to quantify isolated EVs are sparse, and each have limitations. In this report, we introduce the application of a quartz crystal microbalance (QCM) as a biosensor for quantifying EVs in a small drop of volatile solvent after it evaporates and leaves desiccated EVs on the surface of the quartz crystal. The shifts in the crystal’s resonant frequency were found to obey Sauerbrey’s relation for EV quantities up to 6 × 10(7), and it was determined that the biosensors could resolve samples that differ by at least 2.7 × 10(5) EVs. A ring-shaped pattern enriched in EVs after the samples had dried on the quartz crystal is also reported and discussed. QCM technology is highly sensitive and only requires small sample volumes and is significantly less costly compared with the approaches that are currently used for EV quantification.