Cargando…
Ensem-HAR: An Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity Recognition for Measurement of Elderly Health Monitoring
Biomedical images contain a huge number of sensor measurements that can provide disease characteristics. Computer-assisted analysis of such parameters aids in the early detection of disease, and as a result aids medical professionals in quickly selecting appropriate medications. Human Activity Recog...
Autores principales: | Bhattacharya, Debarshi, Sharma, Deepak, Kim, Wonjoon, Ijaz, Muhammad Fazal, Singh, Pawan Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221472/ https://www.ncbi.nlm.nih.gov/pubmed/35735541 http://dx.doi.org/10.3390/bios12060393 |
Ejemplares similares
-
SnapEnsemFS: a snapshot ensembling-based deep feature selection model for colorectal cancer histological analysis
por: Chattopadhyay, Soumitri, et al.
Publicado: (2023) -
iDHU-Ensem: Identification of dihydrouridine sites through ensemble learning models
por: Suleman, Muhammad Taseer, et al.
Publicado: (2023) -
EnsemV3X: a novel ensembled deep learning architecture for multi-label scene classification
por: Sobti, Priyal, et al.
Publicado: (2021) -
EnsemDeepCADx: Empowering Colorectal Cancer Diagnosis with Mixed-Dataset Features and Ensemble Fusion CNNs on Evidence-Based CKHK-22 Dataset
por: Raju, Akella Subrahmanya Narasimha, et al.
Publicado: (2023) -
Harnessing consumer smartphone and wearable sensors for clinical cancer research
por: Low, Carissa A.
Publicado: (2020)