Cargando…
Feasibility of Differential Dose—Volume Histogram Features in Multivariate Prediction Model for Radiation Pneumonitis Occurrence
The purpose of this study is to introduce differential dose–volume histogram (dDVH) features into machine learning for radiation pneumonitis (RP) prediction and to demonstrate the predictive performance of the developed model based on integrated cumulative dose–volume histogram (cDVH) and dDVH featu...
Autores principales: | Katsuta, Yoshiyuki, Kadoya, Noriyuki, Sugai, Yuto, Katagiri, Yu, Yamamoto, Takaya, Takeda, Kazuya, Tanaka, Shohei, Jingu, Keiichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221601/ https://www.ncbi.nlm.nih.gov/pubmed/35741164 http://dx.doi.org/10.3390/diagnostics12061354 |
Ejemplares similares
-
Prediction of radiation pneumonitis with machine learning using 4D-CT based dose-function features
por: Katsuta, Yoshiyuki, et al.
Publicado: (2021) -
Comparison of acute gastrointestinal toxicities between 3-dimensional conformal radiotherapy and intensity-modulated radiotherapy including prophylactic regions in chemoradiotherapy with S-1 for pancreatic cancer—importance of dose volume histogram parameters in the stomach as the predictive factors-
por: Umezawa, Rei, et al.
Publicado: (2022) -
Evaluation of deep learning-based deliverable VMAT plan generated by prototype software for automated planning for prostate cancer patients
por: Kadoya, Noriyuki, et al.
Publicado: (2023) -
A deep learning-based radiomics approach to predict head and neck tumor regression for adaptive radiotherapy
por: Tanaka, Shohei, et al.
Publicado: (2022) -
Impact of feature selection methods and subgroup factors on prognostic analysis with CT-based radiomics in non-small cell lung cancer patients
por: Sugai, Yuto, et al.
Publicado: (2021)