Cargando…
A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl–Neelsen Stain on Tissue
Mycobacteria identification is crucial to diagnose tuberculosis. Since the bacillus is very small, finding it in Ziehl–Neelsen (ZN)-stained slides is a long task requiring significant pathologist’s effort. We developed an automated (AI-based) method of identification of mycobacteria. We prepared a t...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221616/ https://www.ncbi.nlm.nih.gov/pubmed/35741294 http://dx.doi.org/10.3390/diagnostics12061484 |
_version_ | 1784732666891862016 |
---|---|
author | Zurac, Sabina Mogodici, Cristian Poncu, Teodor Trăscău, Mihai Popp, Cristiana Nichita, Luciana Cioplea, Mirela Ceachi, Bogdan Sticlaru, Liana Cioroianu, Alexandra Busca, Mihai Stefan, Oana Tudor, Irina Voicu, Andrei Stanescu, Daliana Mustatea, Petronel Dumitru, Carmen Bastian, Alexandra |
author_facet | Zurac, Sabina Mogodici, Cristian Poncu, Teodor Trăscău, Mihai Popp, Cristiana Nichita, Luciana Cioplea, Mirela Ceachi, Bogdan Sticlaru, Liana Cioroianu, Alexandra Busca, Mihai Stefan, Oana Tudor, Irina Voicu, Andrei Stanescu, Daliana Mustatea, Petronel Dumitru, Carmen Bastian, Alexandra |
author_sort | Zurac, Sabina |
collection | PubMed |
description | Mycobacteria identification is crucial to diagnose tuberculosis. Since the bacillus is very small, finding it in Ziehl–Neelsen (ZN)-stained slides is a long task requiring significant pathologist’s effort. We developed an automated (AI-based) method of identification of mycobacteria. We prepared a training dataset of over 260,000 positive and over 700,000,000 negative patches annotated on scans of 510 whole slide images (WSI) of ZN-stained slides (110 positive and 400 negative). Several image augmentation techniques coupled with different custom computer vision architectures were used. WSIs automatic analysis was followed by a report indicating areas more likely to present mycobacteria. Our model performs AI-based diagnosis (the final decision of the diagnosis of WSI belongs to the pathologist). The results were validated internally on a dataset of 286,000 patches and tested in pathology laboratory settings on 60 ZN slides (23 positive and 37 negative). We compared the pathologists’ results obtained by separately evaluating slides and WSIs with the results given by a pathologist aided by automatic analysis of WSIs. Our architecture showed 0.977 area under the receiver operating characteristic curve. The clinical test presented 98.33% accuracy, 95.65% sensitivity, and 100% specificity for the AI-assisted method, outperforming any other AI-based proposed methods for AFB detection. |
format | Online Article Text |
id | pubmed-9221616 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92216162022-06-24 A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl–Neelsen Stain on Tissue Zurac, Sabina Mogodici, Cristian Poncu, Teodor Trăscău, Mihai Popp, Cristiana Nichita, Luciana Cioplea, Mirela Ceachi, Bogdan Sticlaru, Liana Cioroianu, Alexandra Busca, Mihai Stefan, Oana Tudor, Irina Voicu, Andrei Stanescu, Daliana Mustatea, Petronel Dumitru, Carmen Bastian, Alexandra Diagnostics (Basel) Article Mycobacteria identification is crucial to diagnose tuberculosis. Since the bacillus is very small, finding it in Ziehl–Neelsen (ZN)-stained slides is a long task requiring significant pathologist’s effort. We developed an automated (AI-based) method of identification of mycobacteria. We prepared a training dataset of over 260,000 positive and over 700,000,000 negative patches annotated on scans of 510 whole slide images (WSI) of ZN-stained slides (110 positive and 400 negative). Several image augmentation techniques coupled with different custom computer vision architectures were used. WSIs automatic analysis was followed by a report indicating areas more likely to present mycobacteria. Our model performs AI-based diagnosis (the final decision of the diagnosis of WSI belongs to the pathologist). The results were validated internally on a dataset of 286,000 patches and tested in pathology laboratory settings on 60 ZN slides (23 positive and 37 negative). We compared the pathologists’ results obtained by separately evaluating slides and WSIs with the results given by a pathologist aided by automatic analysis of WSIs. Our architecture showed 0.977 area under the receiver operating characteristic curve. The clinical test presented 98.33% accuracy, 95.65% sensitivity, and 100% specificity for the AI-assisted method, outperforming any other AI-based proposed methods for AFB detection. MDPI 2022-06-17 /pmc/articles/PMC9221616/ /pubmed/35741294 http://dx.doi.org/10.3390/diagnostics12061484 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zurac, Sabina Mogodici, Cristian Poncu, Teodor Trăscău, Mihai Popp, Cristiana Nichita, Luciana Cioplea, Mirela Ceachi, Bogdan Sticlaru, Liana Cioroianu, Alexandra Busca, Mihai Stefan, Oana Tudor, Irina Voicu, Andrei Stanescu, Daliana Mustatea, Petronel Dumitru, Carmen Bastian, Alexandra A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl–Neelsen Stain on Tissue |
title | A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl–Neelsen Stain on Tissue |
title_full | A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl–Neelsen Stain on Tissue |
title_fullStr | A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl–Neelsen Stain on Tissue |
title_full_unstemmed | A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl–Neelsen Stain on Tissue |
title_short | A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl–Neelsen Stain on Tissue |
title_sort | new artificial intelligence-based method for identifying mycobacterium tuberculosis in ziehl–neelsen stain on tissue |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221616/ https://www.ncbi.nlm.nih.gov/pubmed/35741294 http://dx.doi.org/10.3390/diagnostics12061484 |
work_keys_str_mv | AT zuracsabina anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT mogodicicristian anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT poncuteodor anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT trascaumihai anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT poppcristiana anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT nichitaluciana anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT ciopleamirela anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT ceachibogdan anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT sticlaruliana anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT cioroianualexandra anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT buscamihai anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT stefanoana anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT tudoririna anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT voicuandrei anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT stanescudaliana anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT mustateapetronel anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT dumitrucarmen anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT bastianalexandra anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT zuracsabina newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT mogodicicristian newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT poncuteodor newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT trascaumihai newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT poppcristiana newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT nichitaluciana newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT ciopleamirela newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT ceachibogdan newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT sticlaruliana newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT cioroianualexandra newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT buscamihai newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT stefanoana newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT tudoririna newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT voicuandrei newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT stanescudaliana newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT mustateapetronel newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT dumitrucarmen newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue AT bastianalexandra newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue |