Cargando…

A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl–Neelsen Stain on Tissue

Mycobacteria identification is crucial to diagnose tuberculosis. Since the bacillus is very small, finding it in Ziehl–Neelsen (ZN)-stained slides is a long task requiring significant pathologist’s effort. We developed an automated (AI-based) method of identification of mycobacteria. We prepared a t...

Descripción completa

Detalles Bibliográficos
Autores principales: Zurac, Sabina, Mogodici, Cristian, Poncu, Teodor, Trăscău, Mihai, Popp, Cristiana, Nichita, Luciana, Cioplea, Mirela, Ceachi, Bogdan, Sticlaru, Liana, Cioroianu, Alexandra, Busca, Mihai, Stefan, Oana, Tudor, Irina, Voicu, Andrei, Stanescu, Daliana, Mustatea, Petronel, Dumitru, Carmen, Bastian, Alexandra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221616/
https://www.ncbi.nlm.nih.gov/pubmed/35741294
http://dx.doi.org/10.3390/diagnostics12061484
_version_ 1784732666891862016
author Zurac, Sabina
Mogodici, Cristian
Poncu, Teodor
Trăscău, Mihai
Popp, Cristiana
Nichita, Luciana
Cioplea, Mirela
Ceachi, Bogdan
Sticlaru, Liana
Cioroianu, Alexandra
Busca, Mihai
Stefan, Oana
Tudor, Irina
Voicu, Andrei
Stanescu, Daliana
Mustatea, Petronel
Dumitru, Carmen
Bastian, Alexandra
author_facet Zurac, Sabina
Mogodici, Cristian
Poncu, Teodor
Trăscău, Mihai
Popp, Cristiana
Nichita, Luciana
Cioplea, Mirela
Ceachi, Bogdan
Sticlaru, Liana
Cioroianu, Alexandra
Busca, Mihai
Stefan, Oana
Tudor, Irina
Voicu, Andrei
Stanescu, Daliana
Mustatea, Petronel
Dumitru, Carmen
Bastian, Alexandra
author_sort Zurac, Sabina
collection PubMed
description Mycobacteria identification is crucial to diagnose tuberculosis. Since the bacillus is very small, finding it in Ziehl–Neelsen (ZN)-stained slides is a long task requiring significant pathologist’s effort. We developed an automated (AI-based) method of identification of mycobacteria. We prepared a training dataset of over 260,000 positive and over 700,000,000 negative patches annotated on scans of 510 whole slide images (WSI) of ZN-stained slides (110 positive and 400 negative). Several image augmentation techniques coupled with different custom computer vision architectures were used. WSIs automatic analysis was followed by a report indicating areas more likely to present mycobacteria. Our model performs AI-based diagnosis (the final decision of the diagnosis of WSI belongs to the pathologist). The results were validated internally on a dataset of 286,000 patches and tested in pathology laboratory settings on 60 ZN slides (23 positive and 37 negative). We compared the pathologists’ results obtained by separately evaluating slides and WSIs with the results given by a pathologist aided by automatic analysis of WSIs. Our architecture showed 0.977 area under the receiver operating characteristic curve. The clinical test presented 98.33% accuracy, 95.65% sensitivity, and 100% specificity for the AI-assisted method, outperforming any other AI-based proposed methods for AFB detection.
format Online
Article
Text
id pubmed-9221616
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92216162022-06-24 A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl–Neelsen Stain on Tissue Zurac, Sabina Mogodici, Cristian Poncu, Teodor Trăscău, Mihai Popp, Cristiana Nichita, Luciana Cioplea, Mirela Ceachi, Bogdan Sticlaru, Liana Cioroianu, Alexandra Busca, Mihai Stefan, Oana Tudor, Irina Voicu, Andrei Stanescu, Daliana Mustatea, Petronel Dumitru, Carmen Bastian, Alexandra Diagnostics (Basel) Article Mycobacteria identification is crucial to diagnose tuberculosis. Since the bacillus is very small, finding it in Ziehl–Neelsen (ZN)-stained slides is a long task requiring significant pathologist’s effort. We developed an automated (AI-based) method of identification of mycobacteria. We prepared a training dataset of over 260,000 positive and over 700,000,000 negative patches annotated on scans of 510 whole slide images (WSI) of ZN-stained slides (110 positive and 400 negative). Several image augmentation techniques coupled with different custom computer vision architectures were used. WSIs automatic analysis was followed by a report indicating areas more likely to present mycobacteria. Our model performs AI-based diagnosis (the final decision of the diagnosis of WSI belongs to the pathologist). The results were validated internally on a dataset of 286,000 patches and tested in pathology laboratory settings on 60 ZN slides (23 positive and 37 negative). We compared the pathologists’ results obtained by separately evaluating slides and WSIs with the results given by a pathologist aided by automatic analysis of WSIs. Our architecture showed 0.977 area under the receiver operating characteristic curve. The clinical test presented 98.33% accuracy, 95.65% sensitivity, and 100% specificity for the AI-assisted method, outperforming any other AI-based proposed methods for AFB detection. MDPI 2022-06-17 /pmc/articles/PMC9221616/ /pubmed/35741294 http://dx.doi.org/10.3390/diagnostics12061484 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zurac, Sabina
Mogodici, Cristian
Poncu, Teodor
Trăscău, Mihai
Popp, Cristiana
Nichita, Luciana
Cioplea, Mirela
Ceachi, Bogdan
Sticlaru, Liana
Cioroianu, Alexandra
Busca, Mihai
Stefan, Oana
Tudor, Irina
Voicu, Andrei
Stanescu, Daliana
Mustatea, Petronel
Dumitru, Carmen
Bastian, Alexandra
A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl–Neelsen Stain on Tissue
title A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl–Neelsen Stain on Tissue
title_full A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl–Neelsen Stain on Tissue
title_fullStr A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl–Neelsen Stain on Tissue
title_full_unstemmed A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl–Neelsen Stain on Tissue
title_short A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl–Neelsen Stain on Tissue
title_sort new artificial intelligence-based method for identifying mycobacterium tuberculosis in ziehl–neelsen stain on tissue
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221616/
https://www.ncbi.nlm.nih.gov/pubmed/35741294
http://dx.doi.org/10.3390/diagnostics12061484
work_keys_str_mv AT zuracsabina anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT mogodicicristian anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT poncuteodor anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT trascaumihai anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT poppcristiana anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT nichitaluciana anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT ciopleamirela anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT ceachibogdan anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT sticlaruliana anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT cioroianualexandra anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT buscamihai anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT stefanoana anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT tudoririna anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT voicuandrei anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT stanescudaliana anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT mustateapetronel anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT dumitrucarmen anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT bastianalexandra anewartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT zuracsabina newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT mogodicicristian newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT poncuteodor newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT trascaumihai newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT poppcristiana newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT nichitaluciana newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT ciopleamirela newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT ceachibogdan newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT sticlaruliana newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT cioroianualexandra newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT buscamihai newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT stefanoana newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT tudoririna newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT voicuandrei newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT stanescudaliana newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT mustateapetronel newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT dumitrucarmen newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue
AT bastianalexandra newartificialintelligencebasedmethodforidentifyingmycobacteriumtuberculosisinziehlneelsenstainontissue