Cargando…
Detecting Abnormal Axillary Lymph Nodes on Mammograms Using a Deep Convolutional Neural Network
The purpose of this study was to determine the feasibility of a deep convolutional neural network (dCNN) to accurately detect abnormal axillary lymph nodes on mammograms. In this retrospective study, 107 mammographic images in mediolateral oblique projection from 74 patients were labeled to three cl...
Autores principales: | Abel, Frederik, Landsmann, Anna, Hejduk, Patryk, Ruppert, Carlotta, Borkowski, Karol, Ciritsis, Alexander, Rossi, Cristina, Boss, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221636/ https://www.ncbi.nlm.nih.gov/pubmed/35741157 http://dx.doi.org/10.3390/diagnostics12061347 |
Ejemplares similares
-
Applied Machine Learning in Spiral Breast-CT: Can We Train a Deep Convolutional Neural Network for Automatic, Standardized and Observer Independent Classification of Breast Density?
por: Landsmann, Anna, et al.
Publicado: (2022) -
BI-RADS-Based Classification of Mammographic Soft Tissue Opacities Using a Deep Convolutional Neural Network
por: Sabani, Albin, et al.
Publicado: (2022) -
Radiomics in photon-counting dedicated breast CT: potential of texture analysis for breast density classification
por: Landsmann, Anna, et al.
Publicado: (2022) -
Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network
por: Hejduk, Patryk, et al.
Publicado: (2022) -
Automatic and standardized quality assurance of digital mammography and tomosynthesis with deep convolutional neural networks
por: Hejduk, Patryk, et al.
Publicado: (2023)