Cargando…
Incorporating CNN Features for Optimizing Performance of Ensemble Classifier for Cardiovascular Disease Prediction
Cardiovascular diseases (CVDs) have been regarded as the leading cause of death with 32% of the total deaths around the world. Owing to the large number of symptoms related to age, gender, demographics, and ethnicity, diagnosing CVDs is a challenging and complex task. Furthermore, the lack of experi...
Autores principales: | Rustam, Furqan, Ishaq, Abid, Munir, Kashif, Almutairi, Mubarak, Aslam, Naila, Ashraf, Imran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221641/ https://www.ncbi.nlm.nih.gov/pubmed/35741283 http://dx.doi.org/10.3390/diagnostics12061474 |
Ejemplares similares
-
Ensemble learning-based feature engineering to analyze maternal health during pregnancy and health risk prediction
por: Raza, Ali, et al.
Publicado: (2022) -
Combining CNN Features with Voting Classifiers for Optimizing Performance of Brain Tumor Classification
por: Alturki, Nazik, et al.
Publicado: (2023) -
Self voting classification model for online meeting app review sentiment analysis and topic modeling
por: Aslam, Naila, et al.
Publicado: (2022) -
Analyzing influence of COVID-19 on crypto & financial markets and sentiment analysis using deep ensemble model
por: Washington, Patrick Bernard, et al.
Publicado: (2023) -
Railway Track Fault Detection Using Selective MFCC Features from Acoustic Data
por: Rustam, Furqan, et al.
Publicado: (2023)