Cargando…

COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans

Background: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the “COVLIAS 2.0-cXAI” system using four kinds of class activatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Suri, Jasjit S., Agarwal, Sushant, Chabert, Gian Luca, Carriero, Alessandro, Paschè, Alessio, Danna, Pietro S. C., Saba, Luca, Mehmedović, Armin, Faa, Gavino, Singh, Inder M., Turk, Monika, Chadha, Paramjit S., Johri, Amer M., Khanna, Narendra N., Mavrogeni, Sophie, Laird, John R., Pareek, Gyan, Miner, Martin, Sobel, David W., Balestrieri, Antonella, Sfikakis, Petros P., Tsoulfas, George, Protogerou, Athanasios D., Misra, Durga Prasanna, Agarwal, Vikas, Kitas, George D., Teji, Jagjit S., Al-Maini, Mustafa, Dhanjil, Surinder K., Nicolaides, Andrew, Sharma, Aditya, Rathore, Vijay, Fatemi, Mostafa, Alizad, Azra, Krishnan, Pudukode R., Nagy, Ferenc, Ruzsa, Zoltan, Fouda, Mostafa M., Naidu, Subbaram, Viskovic, Klaudija, Kalra, Mannudeep K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221733/
https://www.ncbi.nlm.nih.gov/pubmed/35741292
http://dx.doi.org/10.3390/diagnostics12061482
_version_ 1784732695250599936
author Suri, Jasjit S.
Agarwal, Sushant
Chabert, Gian Luca
Carriero, Alessandro
Paschè, Alessio
Danna, Pietro S. C.
Saba, Luca
Mehmedović, Armin
Faa, Gavino
Singh, Inder M.
Turk, Monika
Chadha, Paramjit S.
Johri, Amer M.
Khanna, Narendra N.
Mavrogeni, Sophie
Laird, John R.
Pareek, Gyan
Miner, Martin
Sobel, David W.
Balestrieri, Antonella
Sfikakis, Petros P.
Tsoulfas, George
Protogerou, Athanasios D.
Misra, Durga Prasanna
Agarwal, Vikas
Kitas, George D.
Teji, Jagjit S.
Al-Maini, Mustafa
Dhanjil, Surinder K.
Nicolaides, Andrew
Sharma, Aditya
Rathore, Vijay
Fatemi, Mostafa
Alizad, Azra
Krishnan, Pudukode R.
Nagy, Ferenc
Ruzsa, Zoltan
Fouda, Mostafa M.
Naidu, Subbaram
Viskovic, Klaudija
Kalra, Mannudeep K.
author_facet Suri, Jasjit S.
Agarwal, Sushant
Chabert, Gian Luca
Carriero, Alessandro
Paschè, Alessio
Danna, Pietro S. C.
Saba, Luca
Mehmedović, Armin
Faa, Gavino
Singh, Inder M.
Turk, Monika
Chadha, Paramjit S.
Johri, Amer M.
Khanna, Narendra N.
Mavrogeni, Sophie
Laird, John R.
Pareek, Gyan
Miner, Martin
Sobel, David W.
Balestrieri, Antonella
Sfikakis, Petros P.
Tsoulfas, George
Protogerou, Athanasios D.
Misra, Durga Prasanna
Agarwal, Vikas
Kitas, George D.
Teji, Jagjit S.
Al-Maini, Mustafa
Dhanjil, Surinder K.
Nicolaides, Andrew
Sharma, Aditya
Rathore, Vijay
Fatemi, Mostafa
Alizad, Azra
Krishnan, Pudukode R.
Nagy, Ferenc
Ruzsa, Zoltan
Fouda, Mostafa M.
Naidu, Subbaram
Viskovic, Klaudija
Kalra, Mannudeep K.
author_sort Suri, Jasjit S.
collection PubMed
description Background: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the “COVLIAS 2.0-cXAI” system using four kinds of class activation maps (CAM) models. Methodology: Our cohort consisted of ~6000 CT slices from two sources (Croatia, 80 COVID-19 patients and Italy, 15 control patients). COVLIAS 2.0-cXAI design consisted of three stages: (i) automated lung segmentation using hybrid deep learning ResNet-UNet model by automatic adjustment of Hounsfield units, hyperparameter optimization, and parallel and distributed training, (ii) classification using three kinds of DenseNet (DN) models (DN-121, DN-169, DN-201), and (iii) validation using four kinds of CAM visualization techniques: gradient-weighted class activation mapping (Grad-CAM), Grad-CAM++, score-weighted CAM (Score-CAM), and FasterScore-CAM. The COVLIAS 2.0-cXAI was validated by three trained senior radiologists for its stability and reliability. The Friedman test was also performed on the scores of the three radiologists. Results: The ResNet-UNet segmentation model resulted in dice similarity of 0.96, Jaccard index of 0.93, a correlation coefficient of 0.99, with a figure-of-merit of 95.99%, while the classifier accuracies for the three DN nets (DN-121, DN-169, and DN-201) were 98%, 98%, and 99% with a loss of ~0.003, ~0.0025, and ~0.002 using 50 epochs, respectively. The mean AUC for all three DN models was 0.99 (p < 0.0001). The COVLIAS 2.0-cXAI showed 80% scans for mean alignment index (MAI) between heatmaps and gold standard, a score of four out of five, establishing the system for clinical settings. Conclusions: The COVLIAS 2.0-cXAI successfully showed a cloud-based explainable AI system for lesion localization in lung CT scans.
format Online
Article
Text
id pubmed-9221733
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92217332022-06-24 COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans Suri, Jasjit S. Agarwal, Sushant Chabert, Gian Luca Carriero, Alessandro Paschè, Alessio Danna, Pietro S. C. Saba, Luca Mehmedović, Armin Faa, Gavino Singh, Inder M. Turk, Monika Chadha, Paramjit S. Johri, Amer M. Khanna, Narendra N. Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios D. Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Teji, Jagjit S. Al-Maini, Mustafa Dhanjil, Surinder K. Nicolaides, Andrew Sharma, Aditya Rathore, Vijay Fatemi, Mostafa Alizad, Azra Krishnan, Pudukode R. Nagy, Ferenc Ruzsa, Zoltan Fouda, Mostafa M. Naidu, Subbaram Viskovic, Klaudija Kalra, Mannudeep K. Diagnostics (Basel) Article Background: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the “COVLIAS 2.0-cXAI” system using four kinds of class activation maps (CAM) models. Methodology: Our cohort consisted of ~6000 CT slices from two sources (Croatia, 80 COVID-19 patients and Italy, 15 control patients). COVLIAS 2.0-cXAI design consisted of three stages: (i) automated lung segmentation using hybrid deep learning ResNet-UNet model by automatic adjustment of Hounsfield units, hyperparameter optimization, and parallel and distributed training, (ii) classification using three kinds of DenseNet (DN) models (DN-121, DN-169, DN-201), and (iii) validation using four kinds of CAM visualization techniques: gradient-weighted class activation mapping (Grad-CAM), Grad-CAM++, score-weighted CAM (Score-CAM), and FasterScore-CAM. The COVLIAS 2.0-cXAI was validated by three trained senior radiologists for its stability and reliability. The Friedman test was also performed on the scores of the three radiologists. Results: The ResNet-UNet segmentation model resulted in dice similarity of 0.96, Jaccard index of 0.93, a correlation coefficient of 0.99, with a figure-of-merit of 95.99%, while the classifier accuracies for the three DN nets (DN-121, DN-169, and DN-201) were 98%, 98%, and 99% with a loss of ~0.003, ~0.0025, and ~0.002 using 50 epochs, respectively. The mean AUC for all three DN models was 0.99 (p < 0.0001). The COVLIAS 2.0-cXAI showed 80% scans for mean alignment index (MAI) between heatmaps and gold standard, a score of four out of five, establishing the system for clinical settings. Conclusions: The COVLIAS 2.0-cXAI successfully showed a cloud-based explainable AI system for lesion localization in lung CT scans. MDPI 2022-06-16 /pmc/articles/PMC9221733/ /pubmed/35741292 http://dx.doi.org/10.3390/diagnostics12061482 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Suri, Jasjit S.
Agarwal, Sushant
Chabert, Gian Luca
Carriero, Alessandro
Paschè, Alessio
Danna, Pietro S. C.
Saba, Luca
Mehmedović, Armin
Faa, Gavino
Singh, Inder M.
Turk, Monika
Chadha, Paramjit S.
Johri, Amer M.
Khanna, Narendra N.
Mavrogeni, Sophie
Laird, John R.
Pareek, Gyan
Miner, Martin
Sobel, David W.
Balestrieri, Antonella
Sfikakis, Petros P.
Tsoulfas, George
Protogerou, Athanasios D.
Misra, Durga Prasanna
Agarwal, Vikas
Kitas, George D.
Teji, Jagjit S.
Al-Maini, Mustafa
Dhanjil, Surinder K.
Nicolaides, Andrew
Sharma, Aditya
Rathore, Vijay
Fatemi, Mostafa
Alizad, Azra
Krishnan, Pudukode R.
Nagy, Ferenc
Ruzsa, Zoltan
Fouda, Mostafa M.
Naidu, Subbaram
Viskovic, Klaudija
Kalra, Mannudeep K.
COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans
title COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans
title_full COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans
title_fullStr COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans
title_full_unstemmed COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans
title_short COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans
title_sort covlias 2.0-cxai: cloud-based explainable deep learning system for covid-19 lesion localization in computed tomography scans
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221733/
https://www.ncbi.nlm.nih.gov/pubmed/35741292
http://dx.doi.org/10.3390/diagnostics12061482
work_keys_str_mv AT surijasjits covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT agarwalsushant covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT chabertgianluca covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT carrieroalessandro covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT paschealessio covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT dannapietrosc covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT sabaluca covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT mehmedovicarmin covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT faagavino covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT singhinderm covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT turkmonika covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT chadhaparamjits covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT johriamerm covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT khannanarendran covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT mavrogenisophie covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT lairdjohnr covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT pareekgyan covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT minermartin covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT sobeldavidw covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT balestrieriantonella covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT sfikakispetrosp covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT tsoulfasgeorge covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT protogerouathanasiosd covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT misradurgaprasanna covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT agarwalvikas covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT kitasgeorged covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT tejijagjits covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT almainimustafa covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT dhanjilsurinderk covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT nicolaidesandrew covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT sharmaaditya covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT rathorevijay covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT fatemimostafa covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT alizadazra covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT krishnanpudukoder covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT nagyferenc covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT ruzsazoltan covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT foudamostafam covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT naidusubbaram covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT viskovicklaudija covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans
AT kalramannudeepk covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans