Cargando…
COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans
Background: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the “COVLIAS 2.0-cXAI” system using four kinds of class activatio...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221733/ https://www.ncbi.nlm.nih.gov/pubmed/35741292 http://dx.doi.org/10.3390/diagnostics12061482 |
_version_ | 1784732695250599936 |
---|---|
author | Suri, Jasjit S. Agarwal, Sushant Chabert, Gian Luca Carriero, Alessandro Paschè, Alessio Danna, Pietro S. C. Saba, Luca Mehmedović, Armin Faa, Gavino Singh, Inder M. Turk, Monika Chadha, Paramjit S. Johri, Amer M. Khanna, Narendra N. Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios D. Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Teji, Jagjit S. Al-Maini, Mustafa Dhanjil, Surinder K. Nicolaides, Andrew Sharma, Aditya Rathore, Vijay Fatemi, Mostafa Alizad, Azra Krishnan, Pudukode R. Nagy, Ferenc Ruzsa, Zoltan Fouda, Mostafa M. Naidu, Subbaram Viskovic, Klaudija Kalra, Mannudeep K. |
author_facet | Suri, Jasjit S. Agarwal, Sushant Chabert, Gian Luca Carriero, Alessandro Paschè, Alessio Danna, Pietro S. C. Saba, Luca Mehmedović, Armin Faa, Gavino Singh, Inder M. Turk, Monika Chadha, Paramjit S. Johri, Amer M. Khanna, Narendra N. Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios D. Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Teji, Jagjit S. Al-Maini, Mustafa Dhanjil, Surinder K. Nicolaides, Andrew Sharma, Aditya Rathore, Vijay Fatemi, Mostafa Alizad, Azra Krishnan, Pudukode R. Nagy, Ferenc Ruzsa, Zoltan Fouda, Mostafa M. Naidu, Subbaram Viskovic, Klaudija Kalra, Mannudeep K. |
author_sort | Suri, Jasjit S. |
collection | PubMed |
description | Background: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the “COVLIAS 2.0-cXAI” system using four kinds of class activation maps (CAM) models. Methodology: Our cohort consisted of ~6000 CT slices from two sources (Croatia, 80 COVID-19 patients and Italy, 15 control patients). COVLIAS 2.0-cXAI design consisted of three stages: (i) automated lung segmentation using hybrid deep learning ResNet-UNet model by automatic adjustment of Hounsfield units, hyperparameter optimization, and parallel and distributed training, (ii) classification using three kinds of DenseNet (DN) models (DN-121, DN-169, DN-201), and (iii) validation using four kinds of CAM visualization techniques: gradient-weighted class activation mapping (Grad-CAM), Grad-CAM++, score-weighted CAM (Score-CAM), and FasterScore-CAM. The COVLIAS 2.0-cXAI was validated by three trained senior radiologists for its stability and reliability. The Friedman test was also performed on the scores of the three radiologists. Results: The ResNet-UNet segmentation model resulted in dice similarity of 0.96, Jaccard index of 0.93, a correlation coefficient of 0.99, with a figure-of-merit of 95.99%, while the classifier accuracies for the three DN nets (DN-121, DN-169, and DN-201) were 98%, 98%, and 99% with a loss of ~0.003, ~0.0025, and ~0.002 using 50 epochs, respectively. The mean AUC for all three DN models was 0.99 (p < 0.0001). The COVLIAS 2.0-cXAI showed 80% scans for mean alignment index (MAI) between heatmaps and gold standard, a score of four out of five, establishing the system for clinical settings. Conclusions: The COVLIAS 2.0-cXAI successfully showed a cloud-based explainable AI system for lesion localization in lung CT scans. |
format | Online Article Text |
id | pubmed-9221733 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92217332022-06-24 COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans Suri, Jasjit S. Agarwal, Sushant Chabert, Gian Luca Carriero, Alessandro Paschè, Alessio Danna, Pietro S. C. Saba, Luca Mehmedović, Armin Faa, Gavino Singh, Inder M. Turk, Monika Chadha, Paramjit S. Johri, Amer M. Khanna, Narendra N. Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios D. Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Teji, Jagjit S. Al-Maini, Mustafa Dhanjil, Surinder K. Nicolaides, Andrew Sharma, Aditya Rathore, Vijay Fatemi, Mostafa Alizad, Azra Krishnan, Pudukode R. Nagy, Ferenc Ruzsa, Zoltan Fouda, Mostafa M. Naidu, Subbaram Viskovic, Klaudija Kalra, Mannudeep K. Diagnostics (Basel) Article Background: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the “COVLIAS 2.0-cXAI” system using four kinds of class activation maps (CAM) models. Methodology: Our cohort consisted of ~6000 CT slices from two sources (Croatia, 80 COVID-19 patients and Italy, 15 control patients). COVLIAS 2.0-cXAI design consisted of three stages: (i) automated lung segmentation using hybrid deep learning ResNet-UNet model by automatic adjustment of Hounsfield units, hyperparameter optimization, and parallel and distributed training, (ii) classification using three kinds of DenseNet (DN) models (DN-121, DN-169, DN-201), and (iii) validation using four kinds of CAM visualization techniques: gradient-weighted class activation mapping (Grad-CAM), Grad-CAM++, score-weighted CAM (Score-CAM), and FasterScore-CAM. The COVLIAS 2.0-cXAI was validated by three trained senior radiologists for its stability and reliability. The Friedman test was also performed on the scores of the three radiologists. Results: The ResNet-UNet segmentation model resulted in dice similarity of 0.96, Jaccard index of 0.93, a correlation coefficient of 0.99, with a figure-of-merit of 95.99%, while the classifier accuracies for the three DN nets (DN-121, DN-169, and DN-201) were 98%, 98%, and 99% with a loss of ~0.003, ~0.0025, and ~0.002 using 50 epochs, respectively. The mean AUC for all three DN models was 0.99 (p < 0.0001). The COVLIAS 2.0-cXAI showed 80% scans for mean alignment index (MAI) between heatmaps and gold standard, a score of four out of five, establishing the system for clinical settings. Conclusions: The COVLIAS 2.0-cXAI successfully showed a cloud-based explainable AI system for lesion localization in lung CT scans. MDPI 2022-06-16 /pmc/articles/PMC9221733/ /pubmed/35741292 http://dx.doi.org/10.3390/diagnostics12061482 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Suri, Jasjit S. Agarwal, Sushant Chabert, Gian Luca Carriero, Alessandro Paschè, Alessio Danna, Pietro S. C. Saba, Luca Mehmedović, Armin Faa, Gavino Singh, Inder M. Turk, Monika Chadha, Paramjit S. Johri, Amer M. Khanna, Narendra N. Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios D. Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Teji, Jagjit S. Al-Maini, Mustafa Dhanjil, Surinder K. Nicolaides, Andrew Sharma, Aditya Rathore, Vijay Fatemi, Mostafa Alizad, Azra Krishnan, Pudukode R. Nagy, Ferenc Ruzsa, Zoltan Fouda, Mostafa M. Naidu, Subbaram Viskovic, Klaudija Kalra, Mannudeep K. COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans |
title | COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans |
title_full | COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans |
title_fullStr | COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans |
title_full_unstemmed | COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans |
title_short | COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans |
title_sort | covlias 2.0-cxai: cloud-based explainable deep learning system for covid-19 lesion localization in computed tomography scans |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221733/ https://www.ncbi.nlm.nih.gov/pubmed/35741292 http://dx.doi.org/10.3390/diagnostics12061482 |
work_keys_str_mv | AT surijasjits covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT agarwalsushant covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT chabertgianluca covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT carrieroalessandro covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT paschealessio covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT dannapietrosc covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT sabaluca covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT mehmedovicarmin covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT faagavino covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT singhinderm covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT turkmonika covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT chadhaparamjits covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT johriamerm covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT khannanarendran covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT mavrogenisophie covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT lairdjohnr covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT pareekgyan covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT minermartin covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT sobeldavidw covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT balestrieriantonella covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT sfikakispetrosp covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT tsoulfasgeorge covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT protogerouathanasiosd covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT misradurgaprasanna covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT agarwalvikas covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT kitasgeorged covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT tejijagjits covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT almainimustafa covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT dhanjilsurinderk covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT nicolaidesandrew covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT sharmaaditya covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT rathorevijay covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT fatemimostafa covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT alizadazra covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT krishnanpudukoder covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT nagyferenc covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT ruzsazoltan covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT foudamostafam covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT naidusubbaram covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT viskovicklaudija covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans AT kalramannudeepk covlias20cxaicloudbasedexplainabledeeplearningsystemforcovid19lesionlocalizationincomputedtomographyscans |