Cargando…

Procoagulant Activity in Amniotic Fluid Is Associated with Fetal-Derived Extracellular Vesicles

Procoagulant activity in amniotic fluid (AF) is positively correlated with phosphatidylserine (PS) and tissue factor (TF)-expressing(+) extracellular vesicles (EVs). However, it is unknown if pathological fetal conditions may affect the composition, phenotype, and procoagulant potency of EVs in AF....

Descripción completa

Detalles Bibliográficos
Autores principales: Butov, Kirill R., Karetnikova, Natalia A., Pershin, Dmitry Y., Trofimov, Dmitry Y., Panteleev, Mikhail A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221817/
https://www.ncbi.nlm.nih.gov/pubmed/35735626
http://dx.doi.org/10.3390/cimb44060185
Descripción
Sumario:Procoagulant activity in amniotic fluid (AF) is positively correlated with phosphatidylserine (PS) and tissue factor (TF)-expressing(+) extracellular vesicles (EVs). However, it is unknown if pathological fetal conditions may affect the composition, phenotype, and procoagulant potency of EVs in AF. We sought to evaluate EV-dependent procoagulant activity in AF from pregnant people with fetuses with or without diagnosed chromosomal mutations. AF samples were collected by transabdominal amniocentesis and assessed for common karyotype defects (total n = 11, 7 healthy and 4 abnormal karyotypes). The procoagulant activity of AF was tested using a fibrin generation assay with normal pooled plasma and plasmas deficient in factors XII, XI, IX, X, V, and VII. EV number and phenotype were determined by flow cytometry with anti-CD24 and anti-TF antibodies. We report that factor-VII-, X-, or V-deficient plasmas did not form fibrin clots in the presence of AF. Clotting time was significantly attenuated in AF samples with chromosomal mutations. In addition, CD24+, TF+, and CD24+ TF+ EV counts were significantly lower in this group. Finally, we found a significant correlation between EV counts and the clotting time induced by AF. In conclusion, we show that AF samples with chromosomal mutations had fewer fetal-derived CD24-bearing and TF-bearing EVs, which resulted in diminished procoagulant potency. This suggests that fetal-derived EVs are the predominant source of procoagulant activity in AF.