Cargando…

A 3-miRNA Signature Enables Risk Stratification in Glioblastoma Multiforme Patients with Different Clinical Outcomes

Malignant gliomas constitute a complex disease phenotype that demands optimum decision-making as they are highly heterogeneous. Such inter-individual variability also renders optimum patient stratification extremely difficult. microRNA (hsa-miR-20a, hsa-miR-21, hsa-miR-21) expression levels were det...

Descripción completa

Detalles Bibliográficos
Autores principales: Bafiti, Vivi, Ouzounis, Sotiris, Chalikiopoulou, Constantina, Grigorakou, Eftychia, Grypari, Ioanna Maria, Gregoriou, Gregory, Theofanopoulos, Andreas, Panagiotopoulos, Vasilios, Prodromidi, Evangelia, Cavouras, Dionisis, Zolota, Vasiliki, Kardamakis, Dimitrios, Katsila, Theodora
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221847/
https://www.ncbi.nlm.nih.gov/pubmed/35735454
http://dx.doi.org/10.3390/curroncol29060345
_version_ 1784732724844560384
author Bafiti, Vivi
Ouzounis, Sotiris
Chalikiopoulou, Constantina
Grigorakou, Eftychia
Grypari, Ioanna Maria
Gregoriou, Gregory
Theofanopoulos, Andreas
Panagiotopoulos, Vasilios
Prodromidi, Evangelia
Cavouras, Dionisis
Zolota, Vasiliki
Kardamakis, Dimitrios
Katsila, Theodora
author_facet Bafiti, Vivi
Ouzounis, Sotiris
Chalikiopoulou, Constantina
Grigorakou, Eftychia
Grypari, Ioanna Maria
Gregoriou, Gregory
Theofanopoulos, Andreas
Panagiotopoulos, Vasilios
Prodromidi, Evangelia
Cavouras, Dionisis
Zolota, Vasiliki
Kardamakis, Dimitrios
Katsila, Theodora
author_sort Bafiti, Vivi
collection PubMed
description Malignant gliomas constitute a complex disease phenotype that demands optimum decision-making as they are highly heterogeneous. Such inter-individual variability also renders optimum patient stratification extremely difficult. microRNA (hsa-miR-20a, hsa-miR-21, hsa-miR-21) expression levels were determined by RT-qPCR, upon FFPE tissue sample collection of glioblastoma multiforme patients (n = 37). In silico validation was then performed through discriminant analysis. Immunohistochemistry images from biopsy material were utilized by a hybrid deep learning system to further cross validate the distinctive capability of patient risk groups. Our standard-of-care treated patient cohort demonstrates no age- or sex- dependence. The expression values of the 3-miRNA signature between the low- (OS > 12 months) and high-risk (OS < 12 months) groups yield a p-value of <0.0001, enabling risk stratification. Risk stratification is validated by a. our random forest model that efficiently classifies (AUC = 97%) patients into two risk groups (low- vs. high-risk) by learning their 3-miRNA expression values, and b. our deep learning scheme, which recognizes those patterns that differentiate the images in question. Molecular-clinical correlations were drawn to classify low- (OS > 12 months) vs. high-risk (OS < 12 months) glioblastoma multiforme patients. Our 3-microRNA signature (hsa-miR-20a, hsa-miR-21, hsa-miR-10a) may further empower glioblastoma multiforme prognostic evaluation in clinical practice and enrich drug repurposing pipelines.
format Online
Article
Text
id pubmed-9221847
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92218472022-06-24 A 3-miRNA Signature Enables Risk Stratification in Glioblastoma Multiforme Patients with Different Clinical Outcomes Bafiti, Vivi Ouzounis, Sotiris Chalikiopoulou, Constantina Grigorakou, Eftychia Grypari, Ioanna Maria Gregoriou, Gregory Theofanopoulos, Andreas Panagiotopoulos, Vasilios Prodromidi, Evangelia Cavouras, Dionisis Zolota, Vasiliki Kardamakis, Dimitrios Katsila, Theodora Curr Oncol Article Malignant gliomas constitute a complex disease phenotype that demands optimum decision-making as they are highly heterogeneous. Such inter-individual variability also renders optimum patient stratification extremely difficult. microRNA (hsa-miR-20a, hsa-miR-21, hsa-miR-21) expression levels were determined by RT-qPCR, upon FFPE tissue sample collection of glioblastoma multiforme patients (n = 37). In silico validation was then performed through discriminant analysis. Immunohistochemistry images from biopsy material were utilized by a hybrid deep learning system to further cross validate the distinctive capability of patient risk groups. Our standard-of-care treated patient cohort demonstrates no age- or sex- dependence. The expression values of the 3-miRNA signature between the low- (OS > 12 months) and high-risk (OS < 12 months) groups yield a p-value of <0.0001, enabling risk stratification. Risk stratification is validated by a. our random forest model that efficiently classifies (AUC = 97%) patients into two risk groups (low- vs. high-risk) by learning their 3-miRNA expression values, and b. our deep learning scheme, which recognizes those patterns that differentiate the images in question. Molecular-clinical correlations were drawn to classify low- (OS > 12 months) vs. high-risk (OS < 12 months) glioblastoma multiforme patients. Our 3-microRNA signature (hsa-miR-20a, hsa-miR-21, hsa-miR-10a) may further empower glioblastoma multiforme prognostic evaluation in clinical practice and enrich drug repurposing pipelines. MDPI 2022-06-16 /pmc/articles/PMC9221847/ /pubmed/35735454 http://dx.doi.org/10.3390/curroncol29060345 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bafiti, Vivi
Ouzounis, Sotiris
Chalikiopoulou, Constantina
Grigorakou, Eftychia
Grypari, Ioanna Maria
Gregoriou, Gregory
Theofanopoulos, Andreas
Panagiotopoulos, Vasilios
Prodromidi, Evangelia
Cavouras, Dionisis
Zolota, Vasiliki
Kardamakis, Dimitrios
Katsila, Theodora
A 3-miRNA Signature Enables Risk Stratification in Glioblastoma Multiforme Patients with Different Clinical Outcomes
title A 3-miRNA Signature Enables Risk Stratification in Glioblastoma Multiforme Patients with Different Clinical Outcomes
title_full A 3-miRNA Signature Enables Risk Stratification in Glioblastoma Multiforme Patients with Different Clinical Outcomes
title_fullStr A 3-miRNA Signature Enables Risk Stratification in Glioblastoma Multiforme Patients with Different Clinical Outcomes
title_full_unstemmed A 3-miRNA Signature Enables Risk Stratification in Glioblastoma Multiforme Patients with Different Clinical Outcomes
title_short A 3-miRNA Signature Enables Risk Stratification in Glioblastoma Multiforme Patients with Different Clinical Outcomes
title_sort 3-mirna signature enables risk stratification in glioblastoma multiforme patients with different clinical outcomes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221847/
https://www.ncbi.nlm.nih.gov/pubmed/35735454
http://dx.doi.org/10.3390/curroncol29060345
work_keys_str_mv AT bafitivivi a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT ouzounissotiris a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT chalikiopoulouconstantina a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT grigorakoueftychia a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT grypariioannamaria a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT gregoriougregory a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT theofanopoulosandreas a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT panagiotopoulosvasilios a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT prodromidievangelia a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT cavourasdionisis a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT zolotavasiliki a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT kardamakisdimitrios a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT katsilatheodora a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT bafitivivi 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT ouzounissotiris 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT chalikiopoulouconstantina 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT grigorakoueftychia 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT grypariioannamaria 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT gregoriougregory 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT theofanopoulosandreas 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT panagiotopoulosvasilios 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT prodromidievangelia 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT cavourasdionisis 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT zolotavasiliki 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT kardamakisdimitrios 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes
AT katsilatheodora 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes