Cargando…
A 3-miRNA Signature Enables Risk Stratification in Glioblastoma Multiforme Patients with Different Clinical Outcomes
Malignant gliomas constitute a complex disease phenotype that demands optimum decision-making as they are highly heterogeneous. Such inter-individual variability also renders optimum patient stratification extremely difficult. microRNA (hsa-miR-20a, hsa-miR-21, hsa-miR-21) expression levels were det...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221847/ https://www.ncbi.nlm.nih.gov/pubmed/35735454 http://dx.doi.org/10.3390/curroncol29060345 |
_version_ | 1784732724844560384 |
---|---|
author | Bafiti, Vivi Ouzounis, Sotiris Chalikiopoulou, Constantina Grigorakou, Eftychia Grypari, Ioanna Maria Gregoriou, Gregory Theofanopoulos, Andreas Panagiotopoulos, Vasilios Prodromidi, Evangelia Cavouras, Dionisis Zolota, Vasiliki Kardamakis, Dimitrios Katsila, Theodora |
author_facet | Bafiti, Vivi Ouzounis, Sotiris Chalikiopoulou, Constantina Grigorakou, Eftychia Grypari, Ioanna Maria Gregoriou, Gregory Theofanopoulos, Andreas Panagiotopoulos, Vasilios Prodromidi, Evangelia Cavouras, Dionisis Zolota, Vasiliki Kardamakis, Dimitrios Katsila, Theodora |
author_sort | Bafiti, Vivi |
collection | PubMed |
description | Malignant gliomas constitute a complex disease phenotype that demands optimum decision-making as they are highly heterogeneous. Such inter-individual variability also renders optimum patient stratification extremely difficult. microRNA (hsa-miR-20a, hsa-miR-21, hsa-miR-21) expression levels were determined by RT-qPCR, upon FFPE tissue sample collection of glioblastoma multiforme patients (n = 37). In silico validation was then performed through discriminant analysis. Immunohistochemistry images from biopsy material were utilized by a hybrid deep learning system to further cross validate the distinctive capability of patient risk groups. Our standard-of-care treated patient cohort demonstrates no age- or sex- dependence. The expression values of the 3-miRNA signature between the low- (OS > 12 months) and high-risk (OS < 12 months) groups yield a p-value of <0.0001, enabling risk stratification. Risk stratification is validated by a. our random forest model that efficiently classifies (AUC = 97%) patients into two risk groups (low- vs. high-risk) by learning their 3-miRNA expression values, and b. our deep learning scheme, which recognizes those patterns that differentiate the images in question. Molecular-clinical correlations were drawn to classify low- (OS > 12 months) vs. high-risk (OS < 12 months) glioblastoma multiforme patients. Our 3-microRNA signature (hsa-miR-20a, hsa-miR-21, hsa-miR-10a) may further empower glioblastoma multiforme prognostic evaluation in clinical practice and enrich drug repurposing pipelines. |
format | Online Article Text |
id | pubmed-9221847 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92218472022-06-24 A 3-miRNA Signature Enables Risk Stratification in Glioblastoma Multiforme Patients with Different Clinical Outcomes Bafiti, Vivi Ouzounis, Sotiris Chalikiopoulou, Constantina Grigorakou, Eftychia Grypari, Ioanna Maria Gregoriou, Gregory Theofanopoulos, Andreas Panagiotopoulos, Vasilios Prodromidi, Evangelia Cavouras, Dionisis Zolota, Vasiliki Kardamakis, Dimitrios Katsila, Theodora Curr Oncol Article Malignant gliomas constitute a complex disease phenotype that demands optimum decision-making as they are highly heterogeneous. Such inter-individual variability also renders optimum patient stratification extremely difficult. microRNA (hsa-miR-20a, hsa-miR-21, hsa-miR-21) expression levels were determined by RT-qPCR, upon FFPE tissue sample collection of glioblastoma multiforme patients (n = 37). In silico validation was then performed through discriminant analysis. Immunohistochemistry images from biopsy material were utilized by a hybrid deep learning system to further cross validate the distinctive capability of patient risk groups. Our standard-of-care treated patient cohort demonstrates no age- or sex- dependence. The expression values of the 3-miRNA signature between the low- (OS > 12 months) and high-risk (OS < 12 months) groups yield a p-value of <0.0001, enabling risk stratification. Risk stratification is validated by a. our random forest model that efficiently classifies (AUC = 97%) patients into two risk groups (low- vs. high-risk) by learning their 3-miRNA expression values, and b. our deep learning scheme, which recognizes those patterns that differentiate the images in question. Molecular-clinical correlations were drawn to classify low- (OS > 12 months) vs. high-risk (OS < 12 months) glioblastoma multiforme patients. Our 3-microRNA signature (hsa-miR-20a, hsa-miR-21, hsa-miR-10a) may further empower glioblastoma multiforme prognostic evaluation in clinical practice and enrich drug repurposing pipelines. MDPI 2022-06-16 /pmc/articles/PMC9221847/ /pubmed/35735454 http://dx.doi.org/10.3390/curroncol29060345 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bafiti, Vivi Ouzounis, Sotiris Chalikiopoulou, Constantina Grigorakou, Eftychia Grypari, Ioanna Maria Gregoriou, Gregory Theofanopoulos, Andreas Panagiotopoulos, Vasilios Prodromidi, Evangelia Cavouras, Dionisis Zolota, Vasiliki Kardamakis, Dimitrios Katsila, Theodora A 3-miRNA Signature Enables Risk Stratification in Glioblastoma Multiforme Patients with Different Clinical Outcomes |
title | A 3-miRNA Signature Enables Risk Stratification in Glioblastoma Multiforme Patients with Different Clinical Outcomes |
title_full | A 3-miRNA Signature Enables Risk Stratification in Glioblastoma Multiforme Patients with Different Clinical Outcomes |
title_fullStr | A 3-miRNA Signature Enables Risk Stratification in Glioblastoma Multiforme Patients with Different Clinical Outcomes |
title_full_unstemmed | A 3-miRNA Signature Enables Risk Stratification in Glioblastoma Multiforme Patients with Different Clinical Outcomes |
title_short | A 3-miRNA Signature Enables Risk Stratification in Glioblastoma Multiforme Patients with Different Clinical Outcomes |
title_sort | 3-mirna signature enables risk stratification in glioblastoma multiforme patients with different clinical outcomes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221847/ https://www.ncbi.nlm.nih.gov/pubmed/35735454 http://dx.doi.org/10.3390/curroncol29060345 |
work_keys_str_mv | AT bafitivivi a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT ouzounissotiris a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT chalikiopoulouconstantina a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT grigorakoueftychia a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT grypariioannamaria a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT gregoriougregory a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT theofanopoulosandreas a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT panagiotopoulosvasilios a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT prodromidievangelia a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT cavourasdionisis a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT zolotavasiliki a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT kardamakisdimitrios a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT katsilatheodora a3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT bafitivivi 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT ouzounissotiris 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT chalikiopoulouconstantina 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT grigorakoueftychia 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT grypariioannamaria 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT gregoriougregory 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT theofanopoulosandreas 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT panagiotopoulosvasilios 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT prodromidievangelia 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT cavourasdionisis 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT zolotavasiliki 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT kardamakisdimitrios 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes AT katsilatheodora 3mirnasignatureenablesriskstratificationinglioblastomamultiformepatientswithdifferentclinicaloutcomes |