Cargando…
MixPatch: A New Method for Training Histopathology Image Classifiers
CNN-based image processing has been actively applied to histopathological analysis to detect and classify cancerous tumors automatically. However, CNN-based classifiers generally predict a label with overconfidence, which becomes a serious problem in the medical domain. The objective of this study i...
Autores principales: | Park, Youngjin, Kim, Mujin, Ashraf, Murtaza, Ko, Young Sin, Yi, Mun Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221905/ https://www.ncbi.nlm.nih.gov/pubmed/35741303 http://dx.doi.org/10.3390/diagnostics12061493 |
Ejemplares similares
-
A loss-based patch label denoising method for improving whole-slide image analysis using a convolutional neural network
por: Ashraf, Murtaza, et al.
Publicado: (2022) -
Improving quality control in the routine practice for histopathological interpretation of gastrointestinal endoscopic biopsies using artificial intelligence
por: Ko, Young Sin, et al.
Publicado: (2022) -
Ensemble of adapted convolutional neural networks (CNN) methods for classifying colon histopathological images
por: Albashish, Dheeb
Publicado: (2022) -
Using Sparse Patch Annotation for Tumor Segmentation in Histopathological Images
por: Liu, Yiqing, et al.
Publicado: (2022) -
Exploration and Enhancement of Classifiers in the Detection of Lung Cancer from Histopathological Images
por: Shanmugam, Karthikeyan, et al.
Publicado: (2023)