Cargando…
Machine Learning of Raman Spectroscopy Data for Classifying Cancers: A Review of the Recent Literature
Raman Spectroscopy has long been anticipated to augment clinical decision making, such as classifying oncological samples. Unfortunately, the complexity of Raman data has thus far inhibited their routine use in clinical settings. Traditional machine learning models have been used to help exploit thi...
Autores principales: | Blake, Nathan, Gaifulina, Riana, Griffin, Lewis D., Bell, Ian M., Thomas, Geraint M. H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222091/ https://www.ncbi.nlm.nih.gov/pubmed/35741300 http://dx.doi.org/10.3390/diagnostics12061491 |
Ejemplares similares
-
Deep Learning Applied to Raman Spectroscopy for the Detection of Microsatellite Instability/MMR Deficient Colorectal Cancer
por: Blake, Nathan, et al.
Publicado: (2023) -
Mirrored stainless steel substrate provides improved signal for Raman spectroscopy of tissue and cells
por: Lewis, Aaran T., et al.
Publicado: (2016) -
Rapid and complete paraffin removal from human tissue sections delivers enhanced Raman spectroscopic and histopathological analysis
por: Gaifulina, Riana, et al.
Publicado: (2020) -
Label‐free Raman spectroscopic imaging to extract morphological and chemical information from a formalin‐fixed, paraffin‐embedded rat colon tissue section
por: Gaifulina, Riana, et al.
Publicado: (2016) -
Brillouin–Raman micro-spectroscopy and machine learning techniques to classify osteoarthritic lesions in the human articular cartilage
por: Alunni Cardinali, Martina, et al.
Publicado: (2023)