Cargando…
Using Background Knowledge from Preceding Studies for Building a Random Forest Prediction Model: A Plasmode Simulation Study
There is an increasing interest in machine learning (ML) algorithms for predicting patient outcomes, as these methods are designed to automatically discover complex data patterns. For example, the random forest (RF) algorithm is designed to identify relevant predictor variables out of a large set of...
Autores principales: | Hafermann, Lorena, Klein, Nadja, Rauch, Geraldine, Kammer, Michael, Heinze, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222226/ https://www.ncbi.nlm.nih.gov/pubmed/35741566 http://dx.doi.org/10.3390/e24060847 |
Ejemplares similares
-
Statistical model building: Background “knowledge” based on inappropriate preselection causes misspecification
por: Hafermann, Lorena, et al.
Publicado: (2021) -
Systematic review of education and practical guidance on regression modeling for medical researchers who lack a strong statistical background: Study protocol
por: Bach, Paul, et al.
Publicado: (2020) -
Review of guidance papers on regression modeling in statistical series of medical journals
por: Wallisch, Christine, et al.
Publicado: (2022) -
Comprehensive survey among statistical members of medical ethics committees in Germany on their personal impression of completeness and correctness of biostatistical aspects of submitted study protocols
por: Rauch, Geraldine, et al.
Publicado: (2020) -
Murine genetic models of obesity: type I error rates and the power of commonly used analyses as assessed by plasmode-based simulation
por: Ejima, Keisuke, et al.
Publicado: (2020)