Cargando…
The Optimal Error Estimate of the Fully Discrete Locally Stabilized Finite Volume Method for the Non-Stationary Navier-Stokes Problem
This paper proves the optimal estimations of a low-order spatial-temporal fully discrete method for the non-stationary Navier-Stokes Problem. In this paper, the semi-implicit scheme based on Euler method is adopted for time discretization, while the special finite volume scheme is adopted for space...
Autores principales: | He, Guoliang, Zhang, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222231/ https://www.ncbi.nlm.nih.gov/pubmed/35741489 http://dx.doi.org/10.3390/e24060768 |
Ejemplares similares
-
Error estimates of finite element methods for fractional stochastic Navier–Stokes equations
por: Li, Xiaocui, et al.
Publicado: (2018) -
Symmetry problems the Navier-Stokes problem
por: Ramm, Alexander G, et al.
Publicado: (2019) -
Stabilization of Navier-Stokes flows
por: Barbu, Viorel
Publicado: (2010) -
The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation
por: Esposito, R, et al.
Publicado: (1994) -
Finite element approximation of the Navier-Stokes equations
por: Girault, Vivette, et al.
Publicado: (1979)