Cargando…
Optimal Policy of Multiplayer Poker via Actor-Critic Reinforcement Learning
Poker has been considered a challenging problem in both artificial intelligence and game theory because poker is characterized by imperfect information and uncertainty, which are similar to many realistic problems like auctioning, pricing, cyber security, and operations. However, it is not clear tha...
Autores principales: | Shi, Daming, Guo, Xudong, Liu, Yi, Fan, Wenhui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222241/ https://www.ncbi.nlm.nih.gov/pubmed/35741495 http://dx.doi.org/10.3390/e24060774 |
Ejemplares similares
-
Once online poker, always online poker? Poker modality trajectories over two years
por: Dufour, Magali, et al.
Publicado: (2020) -
The Actor-Dueling-Critic Method for Reinforcement Learning
por: Wu, Menghao, et al.
Publicado: (2019) -
Optimal strategy of the simultaneous dice game Pig for multiplayers: when reinforcement learning meets game theory
por: Zhu, Tian, et al.
Publicado: (2023) -
Oswald Jacoby on poker
por: Jacoby, Oswald, 1902-1984
Publicado: (1940) -
Knowledge Reuse of Multi-Agent Reinforcement Learning in Cooperative Tasks
por: Shi, Daming, et al.
Publicado: (2022)