Cargando…
Preventive Effects of Thinned Apple Extracts on TNF-α-Induced Intestinal Tight Junction Dysfunction in Caco-2 Cells through Myosin Light Chain Kinase Suppression
Inflammatory bowel disease (IBD) is associated with intestinal epithelial barrier dysfunction and elevation of proinflammatory cytokines such as TNF-α. Tight junctions (TJ) control the paracellular barrier of the gut. Thinned apples are an indispensable horticultural agro-waste for apple cultivation...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222279/ https://www.ncbi.nlm.nih.gov/pubmed/35741912 http://dx.doi.org/10.3390/foods11121714 |
_version_ | 1784732834994323456 |
---|---|
author | Lee, Joo-Yeon Kim, Choon Young |
author_facet | Lee, Joo-Yeon Kim, Choon Young |
author_sort | Lee, Joo-Yeon |
collection | PubMed |
description | Inflammatory bowel disease (IBD) is associated with intestinal epithelial barrier dysfunction and elevation of proinflammatory cytokines such as TNF-α. Tight junctions (TJ) control the paracellular barrier of the gut. Thinned apples are an indispensable horticultural agro-waste for apple cultivation, but are disposed by most farmers. This study aimed to elucidate the preventive effect of thinned apple extracts (TAE) on the intestinal epithelial barrier dysfunction induced by TNF-α treatment in Caco-2 cells. The differentiated Caco-2 monolayers were pre-treated with mature apple extract (MAE) and TAE for 1 h and then incubated with 100 ng/mL TNF-α for 24 h. The TJ integrity was estimated by measuring the value of transepithelial electrical resistance (TEER) and the flux of fluorescein isothiocyanate-dextran through paracellular transport. TAE had a better protective effect on the intestinal epithelial barrier than MAE did. Western blot results showed that TAE pre-retreatment elevated TJ protein levels such as claudin-1, -4, and -5. Moreover, TAE inhibited the interaction between zonula occludens proteins (ZO)-1 and occludin by reducing the tyrosine phosphorylation of ZO-1. The mechanisms underlying TAE-mediated attenuation of TNF-α-induced TJ disruption included suppression of myosin light chain kinase and NF-κB p65 protein levels. Therefore, thinned apples could be a sustainable ingredient for functional foods to prevent IBD. |
format | Online Article Text |
id | pubmed-9222279 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92222792022-06-24 Preventive Effects of Thinned Apple Extracts on TNF-α-Induced Intestinal Tight Junction Dysfunction in Caco-2 Cells through Myosin Light Chain Kinase Suppression Lee, Joo-Yeon Kim, Choon Young Foods Article Inflammatory bowel disease (IBD) is associated with intestinal epithelial barrier dysfunction and elevation of proinflammatory cytokines such as TNF-α. Tight junctions (TJ) control the paracellular barrier of the gut. Thinned apples are an indispensable horticultural agro-waste for apple cultivation, but are disposed by most farmers. This study aimed to elucidate the preventive effect of thinned apple extracts (TAE) on the intestinal epithelial barrier dysfunction induced by TNF-α treatment in Caco-2 cells. The differentiated Caco-2 monolayers were pre-treated with mature apple extract (MAE) and TAE for 1 h and then incubated with 100 ng/mL TNF-α for 24 h. The TJ integrity was estimated by measuring the value of transepithelial electrical resistance (TEER) and the flux of fluorescein isothiocyanate-dextran through paracellular transport. TAE had a better protective effect on the intestinal epithelial barrier than MAE did. Western blot results showed that TAE pre-retreatment elevated TJ protein levels such as claudin-1, -4, and -5. Moreover, TAE inhibited the interaction between zonula occludens proteins (ZO)-1 and occludin by reducing the tyrosine phosphorylation of ZO-1. The mechanisms underlying TAE-mediated attenuation of TNF-α-induced TJ disruption included suppression of myosin light chain kinase and NF-κB p65 protein levels. Therefore, thinned apples could be a sustainable ingredient for functional foods to prevent IBD. MDPI 2022-06-11 /pmc/articles/PMC9222279/ /pubmed/35741912 http://dx.doi.org/10.3390/foods11121714 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lee, Joo-Yeon Kim, Choon Young Preventive Effects of Thinned Apple Extracts on TNF-α-Induced Intestinal Tight Junction Dysfunction in Caco-2 Cells through Myosin Light Chain Kinase Suppression |
title | Preventive Effects of Thinned Apple Extracts on TNF-α-Induced Intestinal Tight Junction Dysfunction in Caco-2 Cells through Myosin Light Chain Kinase Suppression |
title_full | Preventive Effects of Thinned Apple Extracts on TNF-α-Induced Intestinal Tight Junction Dysfunction in Caco-2 Cells through Myosin Light Chain Kinase Suppression |
title_fullStr | Preventive Effects of Thinned Apple Extracts on TNF-α-Induced Intestinal Tight Junction Dysfunction in Caco-2 Cells through Myosin Light Chain Kinase Suppression |
title_full_unstemmed | Preventive Effects of Thinned Apple Extracts on TNF-α-Induced Intestinal Tight Junction Dysfunction in Caco-2 Cells through Myosin Light Chain Kinase Suppression |
title_short | Preventive Effects of Thinned Apple Extracts on TNF-α-Induced Intestinal Tight Junction Dysfunction in Caco-2 Cells through Myosin Light Chain Kinase Suppression |
title_sort | preventive effects of thinned apple extracts on tnf-α-induced intestinal tight junction dysfunction in caco-2 cells through myosin light chain kinase suppression |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222279/ https://www.ncbi.nlm.nih.gov/pubmed/35741912 http://dx.doi.org/10.3390/foods11121714 |
work_keys_str_mv | AT leejooyeon preventiveeffectsofthinnedappleextractsontnfainducedintestinaltightjunctiondysfunctionincaco2cellsthroughmyosinlightchainkinasesuppression AT kimchoonyoung preventiveeffectsofthinnedappleextractsontnfainducedintestinaltightjunctiondysfunctionincaco2cellsthroughmyosinlightchainkinasesuppression |