Cargando…
Pareto-Optimal Clustering with the Primal Deterministic Information Bottleneck
At the heart of both lossy compression and clustering is a trade-off between the fidelity and size of the learned representation. Our goal is to map out and study the Pareto frontier that quantifies this trade-off. We focus on the optimization of the Deterministic Information Bottleneck (DIB) object...
Autores principales: | Tan, Andrew K., Tegmark, Max, Chuang, Isaac L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222302/ https://www.ncbi.nlm.nih.gov/pubmed/35741492 http://dx.doi.org/10.3390/e24060771 |
Ejemplares similares
-
Learnability for the Information Bottleneck
por: Wu, Tailin, et al.
Publicado: (2019) -
Pareto-Optimal Data Compression for Binary Classification Tasks
por: Tegmark, Max, et al.
Publicado: (2019) -
Criticality in Pareto Optimal Grammars?
por: Seoane, Luís F, et al.
Publicado: (2020) -
Pareto Optimization in Oil Refinery
por: Kostenko, Dmitri, et al.
Publicado: (2020) -
Pareto-optimization in computational electromagnetics
por: Russenschuck, Stephan
Publicado: (1993)