Cargando…
Forecasting new diseases in low-data settings using transfer learning
Recent infectious disease outbreaks, such as the COVID-19 pandemic and the Zika epidemic in Brazil, have demonstrated both the importance and difficulty of accurately forecasting novel infectious diseases. When new diseases first emerge, we have little knowledge of the transmission process, the leve...
Autores principales: | Roster, Kirstin, Connaughton, Colm, Rodrigues, Francisco A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222348/ https://www.ncbi.nlm.nih.gov/pubmed/35765601 http://dx.doi.org/10.1016/j.chaos.2022.112306 |
Ejemplares similares
-
Estimating the impact of the COVID-19 pandemic on dengue in Brazil
por: Roster, K. O., et al.
Publicado: (2023) -
Application of machine learning and complex network measures to an EEG dataset from ayahuasca experiments
por: Alves, Caroline L., et al.
Publicado: (2022) -
Transfer learning strategies for solar power forecasting under data scarcity
por: Sarmas, Elissaios, et al.
Publicado: (2022) -
Country Case Studies in Economic Fitness: Mexico and Brazil
por: Roster, Kirstin, et al.
Publicado: (2018) -
Estimating changes in antibiotic consumption with the introduction of doxycycline post-exposure prophylaxis in the United States
por: Roster, Kirstin I. Oliveira, et al.
Publicado: (2023)