Cargando…
A List-Ranking Framework Based on Linear and Non-Linear Fusion for Recommendation from Implicit Feedback
Although most list-ranking frameworks are based on multilayer perceptrons (MLP), they still face limitations within the method itself in the field of recommender systems in two respects: (1) MLP suffer from overfitting when dealing with sparse vectors. At the same time, the model itself tends to lea...
Autores principales: | Wu, Buchen, Qin, Jiwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222433/ https://www.ncbi.nlm.nih.gov/pubmed/35741499 http://dx.doi.org/10.3390/e24060778 |
Ejemplares similares
-
Implicit scaling of linear least squares problems
por: Reid, J K
Publicado: (1998) -
A Ranking Recommendation Algorithm Based on Dynamic User Preference
por: Wei, Chunting, et al.
Publicado: (2022) -
Integrating prospect theory with variable reference point into the conversion-based framework for linear ordinal ranking aggregation
por: Liu, Nana, et al.
Publicado: (2022) -
Linear feedback analysis
por: Thomason, J W G
Publicado: (1955) -
Distress Propagation in Complex Networks: The Case of Non-Linear DebtRank
por: Bardoscia, Marco, et al.
Publicado: (2016)