Cargando…

Effects of Spatial Nonlocality versus Nonlocal Causality for Bound Electrons in External Fields

Using numerically exact solution of the time-dependent Schrödinger equation together with time-dependent quantum Monte Carlo (TDQMC) calculations, here we compare the effects of spatial nonlocality versus nonlocal causality for the ground state and for real-time evolution of two entangled electrons...

Descripción completa

Detalles Bibliográficos
Autor principal: Christov, Ivan P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222517/
https://www.ncbi.nlm.nih.gov/pubmed/35741560
http://dx.doi.org/10.3390/e24060840
Descripción
Sumario:Using numerically exact solution of the time-dependent Schrödinger equation together with time-dependent quantum Monte Carlo (TDQMC) calculations, here we compare the effects of spatial nonlocality versus nonlocal causality for the ground state and for real-time evolution of two entangled electrons in parabolic potential in one spatial dimension. It was found that the spatial entanglement quantified by the linear quantum entropy is predicted with good accuracy using the spatial nonlocality, parameterized naturally within the TDQMC approach. At the same time, the nonlocal causality predicted by the exact solution leads to only small oscillations in the quantum trajectories which belong to the idler electron as the driven electron is subjected to a strong high frequency electric field, without interaction between the electrons.