Cargando…
Analysis of Chaotic Dynamics by the Extended Entropic Chaos Degree
The Lyapunov exponent is the most-well-known measure for quantifying chaos in a dynamical system. However, its computation for any time series without information regarding a dynamical system is challenging because the Jacobian matrix of the map generating the dynamical system is required. The entro...
Autor principal: | Inoue, Kei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222571/ https://www.ncbi.nlm.nih.gov/pubmed/35741547 http://dx.doi.org/10.3390/e24060827 |
Ejemplares similares
-
An Improved Calculation Formula of the Extended Entropic Chaos Degree and Its Application to Two-Dimensional Chaotic Maps
por: Inoue, Kei
Publicado: (2021) -
How Chaotic Is Genome Chaos?
por: Shapiro, James A.
Publicado: (2021) -
From Determinism and Probability to Chaos: Chaotic Evolution towards Philosophy and Methodology of Chaotic Optimization
por: Pei, Yan
Publicado: (2015) -
Chaos analysis and chaotic EMI suppression of DC-DC converters
por: Zhang, Bo
Publicado: (2014) -
From order to chaos: essays : critical, chaotic and otherwise
por: Kadanoff, Leo P
Publicado: (1993)