Cargando…

Quantum Models à la Gabor for the Space-Time Metric

As an extension of Gabor signal processing, the covariant Weyl-Heisenberg integral quantization is implemented to transform functions on the eight-dimensional phase space [Formula: see text] into Hilbertian operators. The [Formula: see text] values are space-time variables, and the [Formula: see tex...

Descripción completa

Detalles Bibliográficos
Autores principales: Cohen-Tannoudji, Gilles, Gazeau, Jean-Pierre, Habonimana, Célestin, Shabani, Juma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222705/
https://www.ncbi.nlm.nih.gov/pubmed/35741555
http://dx.doi.org/10.3390/e24060835
Descripción
Sumario:As an extension of Gabor signal processing, the covariant Weyl-Heisenberg integral quantization is implemented to transform functions on the eight-dimensional phase space [Formula: see text] into Hilbertian operators. The [Formula: see text] values are space-time variables, and the [Formula: see text] values are their conjugate frequency-wave vector variables. The procedure is first applied to the variables [Formula: see text] and produces essentially canonically conjugate self-adjoint operators. It is next applied to the metric field [Formula: see text] of general relativity and yields regularized semi-classical phase space portraits [Formula: see text]. The latter give rise to modified tensor energy density. Examples are given with the uniformly accelerated reference system and the Schwarzschild metric. Interesting probabilistic aspects are discussed.