Cargando…
Quantum Models à la Gabor for the Space-Time Metric
As an extension of Gabor signal processing, the covariant Weyl-Heisenberg integral quantization is implemented to transform functions on the eight-dimensional phase space [Formula: see text] into Hilbertian operators. The [Formula: see text] values are space-time variables, and the [Formula: see tex...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222705/ https://www.ncbi.nlm.nih.gov/pubmed/35741555 http://dx.doi.org/10.3390/e24060835 |
_version_ | 1784732932109238272 |
---|---|
author | Cohen-Tannoudji, Gilles Gazeau, Jean-Pierre Habonimana, Célestin Shabani, Juma |
author_facet | Cohen-Tannoudji, Gilles Gazeau, Jean-Pierre Habonimana, Célestin Shabani, Juma |
author_sort | Cohen-Tannoudji, Gilles |
collection | PubMed |
description | As an extension of Gabor signal processing, the covariant Weyl-Heisenberg integral quantization is implemented to transform functions on the eight-dimensional phase space [Formula: see text] into Hilbertian operators. The [Formula: see text] values are space-time variables, and the [Formula: see text] values are their conjugate frequency-wave vector variables. The procedure is first applied to the variables [Formula: see text] and produces essentially canonically conjugate self-adjoint operators. It is next applied to the metric field [Formula: see text] of general relativity and yields regularized semi-classical phase space portraits [Formula: see text]. The latter give rise to modified tensor energy density. Examples are given with the uniformly accelerated reference system and the Schwarzschild metric. Interesting probabilistic aspects are discussed. |
format | Online Article Text |
id | pubmed-9222705 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92227052022-06-24 Quantum Models à la Gabor for the Space-Time Metric Cohen-Tannoudji, Gilles Gazeau, Jean-Pierre Habonimana, Célestin Shabani, Juma Entropy (Basel) Article As an extension of Gabor signal processing, the covariant Weyl-Heisenberg integral quantization is implemented to transform functions on the eight-dimensional phase space [Formula: see text] into Hilbertian operators. The [Formula: see text] values are space-time variables, and the [Formula: see text] values are their conjugate frequency-wave vector variables. The procedure is first applied to the variables [Formula: see text] and produces essentially canonically conjugate self-adjoint operators. It is next applied to the metric field [Formula: see text] of general relativity and yields regularized semi-classical phase space portraits [Formula: see text]. The latter give rise to modified tensor energy density. Examples are given with the uniformly accelerated reference system and the Schwarzschild metric. Interesting probabilistic aspects are discussed. MDPI 2022-06-16 /pmc/articles/PMC9222705/ /pubmed/35741555 http://dx.doi.org/10.3390/e24060835 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cohen-Tannoudji, Gilles Gazeau, Jean-Pierre Habonimana, Célestin Shabani, Juma Quantum Models à la Gabor for the Space-Time Metric |
title | Quantum Models à la Gabor for the Space-Time Metric |
title_full | Quantum Models à la Gabor for the Space-Time Metric |
title_fullStr | Quantum Models à la Gabor for the Space-Time Metric |
title_full_unstemmed | Quantum Models à la Gabor for the Space-Time Metric |
title_short | Quantum Models à la Gabor for the Space-Time Metric |
title_sort | quantum models à la gabor for the space-time metric |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222705/ https://www.ncbi.nlm.nih.gov/pubmed/35741555 http://dx.doi.org/10.3390/e24060835 |
work_keys_str_mv | AT cohentannoudjigilles quantummodelsalagaborforthespacetimemetric AT gazeaujeanpierre quantummodelsalagaborforthespacetimemetric AT habonimanacelestin quantummodelsalagaborforthespacetimemetric AT shabanijuma quantummodelsalagaborforthespacetimemetric |