Cargando…
A Fast Multi-Scale Generative Adversarial Network for Image Compressed Sensing
Recently, deep neural network-based image compressed sensing methods have achieved impressive success in reconstruction quality. However, these methods (1) have limitations in sampling pattern and (2) usually have the disadvantage of high computational complexity. To this end, a fast multi-scale gen...
Autores principales: | Li, Wenzong, Zhu, Aichun, Xu, Yonggang, Yin, Hongsheng, Hua, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222711/ https://www.ncbi.nlm.nih.gov/pubmed/35741496 http://dx.doi.org/10.3390/e24060775 |
Ejemplares similares
-
Multi-Focus Image Fusion Based on Multi-Scale Generative Adversarial Network
por: Ma, Xiaole, et al.
Publicado: (2022) -
An Intelligent Grey Wolf Optimizer Algorithm for Distributed Compressed Sensing
por: Liu, Haiqiang, et al.
Publicado: (2018) -
Remote Sensing Image Dehazing through an Unsupervised Generative Adversarial Network
por: Zhao, Liquan, et al.
Publicado: (2023) -
Generative Adversarial Networks for fast simulation
por: Carminati, Federico, et al.
Publicado: (2020) -
SARA-GAN: Self-Attention and Relative Average Discriminator Based Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction
por: Yuan, Zhenmou, et al.
Publicado: (2020)