Cargando…

Phenotypic Expression of Known and Novel Hemoglobin A2-Variants, Hemoglobin A2-Mae Phrik [Delta 52(D3) Asp > Gly, HBD:c.158A > G], Associated with Hemoglobin E [Beta 26(B8) Glu > Lys, HBB:c.79G > A] in Thailand

The interactions of δ-globin variants with α- and β-thalassemia or other hemoglobinopathies cause complex thalassemic syndromes and potential diagnostic problems. Understanding the molecular basis and phenotypic expression is crucial. Four unrelated Thai subjects with second hemoglobin (Hb) A(2) fra...

Descripción completa

Detalles Bibliográficos
Autores principales: Phasit, Amphai, Panyasai, Sitthichai, Mayoon, Monthon, Jettawan, Niphawan, Satthakarn, Surada
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222742/
https://www.ncbi.nlm.nih.gov/pubmed/35741722
http://dx.doi.org/10.3390/genes13060959
Descripción
Sumario:The interactions of δ-globin variants with α- and β-thalassemia or other hemoglobinopathies cause complex thalassemic syndromes and potential diagnostic problems. Understanding the molecular basis and phenotypic expression is crucial. Four unrelated Thai subjects with second hemoglobin (Hb) A(2) fractions were studied. A standard automated cell counter was used to acquire initial hematological data. Hb analysis was carried out by capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) assays. Globin gene mutations and haplotype were identified by appropriate DNA analysis. An allele-specific polymerase chain reaction method was developed to provide a simple molecular diagnostic test. Hb analysis revealed a Hb A(2) variant in all cases. DNA analysis of the δ-globin gene identified the Hb A(2)-Melbourne [δ43(CD2)Glu > Lys] variant in combination with Hb E in three cases. Analysis of the remaining case identified a novel δ-Hb variant, namely Hb A(2)-Mae Phrik [δ52(D3)GAT > GGT; Asp > Gly], found in association with Hb E and α(+)-thalassemia, indicative of the as yet undescribed combination of triple heterozygosity of globin gene defects. An allele-specific PCR-based assay was successfully developed to identify this variant. The β-haplotype of the Hb A(2) Mae-Phrik allele was strongly associated with haplotype [+ − − − − ± +]. This study advanced our understanding of the phenotypic expression of known and novel δ-Hb variants coinherited with other globin gene defects, routinely causing problems with diagnosis. Therefore, knowledge and recognition of this Hb variant and molecular assessments are crucial to improving diagnosis.