Cargando…

NUMTs Can Imitate Biparental Transmission of mtDNA—A Case in Drosophila melanogaster

mtDNA sequences can be incorporated into the nuclear genome and produce nuclear mitochondrial fragments (NUMTs), which resemble mtDNA in their sequence but are transmitted biparentally, like the nuclear genome. NUMTs can be mistaken as real mtDNA and may lead to the erroneous impression that mtDNA i...

Descripción completa

Detalles Bibliográficos
Autores principales: Parakatselaki, Maria-Eleni, Zhu, Chen-Tseh, Rand, David, Ladoukakis, Emmanuel D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222939/
https://www.ncbi.nlm.nih.gov/pubmed/35741785
http://dx.doi.org/10.3390/genes13061023
Descripción
Sumario:mtDNA sequences can be incorporated into the nuclear genome and produce nuclear mitochondrial fragments (NUMTs), which resemble mtDNA in their sequence but are transmitted biparentally, like the nuclear genome. NUMTs can be mistaken as real mtDNA and may lead to the erroneous impression that mtDNA is biparentally transmitted. Here, we report a case of mtDNA heteroplasmy in a Drosophila melanogaster DGRP line, in which the one haplotype was biparentally transmitted in an autosomal manner. Given the sequence identity of this haplotype with the mtDNA, the crossing experiments led to uncertainty about whether heteroplasmy was real or an artifact due to a NUMT. More specific experiments revealed that there is a large NUMT insertion in the X chromosome of a specific DGRP line, imitating biparental inheritance of mtDNA. Our result suggests that studies on mtDNA heteroplasmy and on mtDNA inheritance should first exclude the possibility of NUMT interference in their data.