Cargando…
Text Mining and Determinants of Sentiments towards the COVID-19 Vaccine Booster of Twitter Users in Malaysia
Vaccination is the primary preventive measure against the COVID-19 infection, and an additional vaccine dosage is crucial to increase the immunity level of the community. However, public bias, as reflected on social media, may have a significant impact on the vaccination program. We aim to investiga...
Autores principales: | Ong, Song-Quan, Pauzi, Maisarah Binti Mohamed, Gan, Keng Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222954/ https://www.ncbi.nlm.nih.gov/pubmed/35742045 http://dx.doi.org/10.3390/healthcare10060994 |
Ejemplares similares
-
Text mining in mosquito-borne disease: A systematic review
por: Ong, Song-Quan, et al.
Publicado: (2022) -
Twitter sentiment analysis: An Arabic text mining approach based on COVID-19
por: Albahli, Saleh
Publicado: (2022) -
Covid-19 vaccine hesitancy: Text mining, sentiment analysis and machine learning on COVID-19 vaccination Twitter dataset
por: Qorib, Miftahul, et al.
Publicado: (2023) -
Text Analysis of Evolving Emotions and Sentiments in COVID-19 Twitter Communication
por: Storey, Veda C., et al.
Publicado: (2022) -
Sentimental text mining based on an additional features method for text classification
por: Cheng, Ching-Hsue, et al.
Publicado: (2019)