Cargando…
Mutational analysis of SARS-CoV-2 variants of concern reveals key tradeoffs between receptor affinity and antibody escape
SARS-CoV-2 variants with enhanced transmissibility represent a serious threat to global health. Here we report machine learning models that can predict the impact of receptor-binding domain (RBD) mutations on receptor (ACE2) affinity, which is linked to infectivity, and escape from human serum antib...
Autores principales: | Makowski, Emily K., Schardt, John S., Smith, Matthew D., Tessier, Peter M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9223403/ https://www.ncbi.nlm.nih.gov/pubmed/35639784 http://dx.doi.org/10.1371/journal.pcbi.1010160 |
Ejemplares similares
-
SARS-CoV-2 Variants, RBD Mutations, Binding Affinity, and Antibody Escape
por: Yang, Lin, et al.
Publicado: (2021) -
Identification of key mutations responsible for the enhancement of receptor-binding affinity and immune escape of SARS-CoV-2 Omicron variant
por: Wang, Wei Bu, et al.
Publicado: (2023) -
Discovery and characterization of high-affinity, potent SARS-CoV-2 neutralizing antibodies via single B cell screening
por: Schardt, John S., et al.
Publicado: (2021) -
Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space
por: Makowski, Emily K., et al.
Publicado: (2022) -
A Detailed Overview of Immune Escape, Antibody Escape, Partial Vaccine Escape of SARS-CoV-2 and Their Emerging Variants With Escape Mutations
por: Chakraborty, Chiranjib, et al.
Publicado: (2022)