Cargando…
Memory augmented recurrent neural networks for de-novo drug design
A recurrent neural network (RNN) is a machine learning model that learns the relationship between elements of an input series, in addition to inferring a relationship between the data input to the model and target output. Memory augmentation allows the RNN to learn the interrelationships between ele...
Autores principales: | Suresh, Naveen, Chinnakonda Ashok Kumar, Neelesh, Subramanian, Srikumar, Srinivasa, Gowri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9223405/ https://www.ncbi.nlm.nih.gov/pubmed/35737661 http://dx.doi.org/10.1371/journal.pone.0269461 |
Ejemplares similares
-
Multiobjective de novo drug design with recurrent neural networks and nondominated sorting
por: Yasonik, Jacob
Publicado: (2020) -
Generative Recurrent Networks for De Novo Drug Design
por: Gupta, Anvita, et al.
Publicado: (2017) -
Robust high-dimensional memory-augmented neural networks
por: Karunaratne, Geethan, et al.
Publicado: (2021) -
Flash-based content addressable memory with L2 distance for memory-augmented neural network
por: Yang, Haozhang, et al.
Publicado: (2023) -
Neural Mechanisms of Working Memory Accuracy Revealed by Recurrent Neural Networks
por: Xie, Yuanqi, et al.
Publicado: (2022)