Cargando…

Antagonistic Pharmacological Interaction between Sirtuin Inhibitor Cambinol and Paclitaxel in Triple-Negative Breast Cancer Cell Lines: An Isobolographic Analysis

Breast cancer (BC) is a heterogeneous disease with different intrinsic subtypes. The most aggressive subtype of BC–triple-negative breast cancer (TNBC) is characterized by high heterogeneity and metastasis rate, poor prognosis and lack of therapeutic targets due to the absence of estrogen receptor,...

Descripción completa

Detalles Bibliográficos
Autores principales: Wawruszak, Anna, Luszczki, Jarogniew, Okon, Estera, Czerwonka, Arkadiusz, Stepulak, Andrzej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9223454/
https://www.ncbi.nlm.nih.gov/pubmed/35742901
http://dx.doi.org/10.3390/ijms23126458
Descripción
Sumario:Breast cancer (BC) is a heterogeneous disease with different intrinsic subtypes. The most aggressive subtype of BC–triple-negative breast cancer (TNBC) is characterized by high heterogeneity and metastasis rate, poor prognosis and lack of therapeutic targets due to the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. Targeted therapies have been approved for many other cancers and even other subtypes of BC, but treatment options for TNBC are still mainly limited to chemotherapy. Therefore, new, more effective treatment regimens are needed. Combined chemotherapy with two or more active agents is considered a promising anti-neoplasm tool in order to achieve better therapeutic response and reduce therapy-related adverse effects. The study demonstrated an antagonistic effect commonly used in TNBC therapy cytostatic drug-paclitaxel (PAX) and sirtuin inhibitor: cambinol (CAM) in BT-549, MDA-MB-468 and HCC1937 TNBC cell lines. The type of pharmacological interaction was determined by a precise and rigorous pharmacodynamic method-isobolographic analysis. The cytotoxic and anti-proliferative effects of CAM used alone or combined with PAX were determined utilizing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-bromo-2′-deoxyuridine (BrdU) assays, respectively. Induction of apoptosis in TNBC cell lines after PAX and CAM treatment applied individually or in combination was determined by flow cytometry (FACS) as a number of cells with active caspase-3. It has been observed that both agents used separately inhibit cell proliferation and induce apoptosis; however, applying them in combination ameliorated antiproliferative and pro-apoptotic effects in all analyzed TNBC cell lines. Our results demonstrate that CAM and PAX used in combination act antagonistically, limiting anti-cancer efficacy and showing the importance of preclinical testing.