Cargando…
In Vivo Dynamic Movement of Polymerized Amyloid β in the Perivascular Space of the Cerebral Cortex in Mice
Disposition of amyloid β (Aβ) into the perivascular space of the cerebral cortex has been recently suggested as a major source of its clearance, and its disturbance may be involved in the pathogenesis of cerebral amyloid angiopathy and Alzheimer’s disease. Here, we explored the in vivo dynamics of A...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9223597/ https://www.ncbi.nlm.nih.gov/pubmed/35742862 http://dx.doi.org/10.3390/ijms23126422 |
_version_ | 1784733163589730304 |
---|---|
author | Hasegawa, Itsuki Hirayoshi, Yoko Minatani, Shinobu Mino, Toshikazu Takeda, Akitoshi Itoh, Yoshiaki |
author_facet | Hasegawa, Itsuki Hirayoshi, Yoko Minatani, Shinobu Mino, Toshikazu Takeda, Akitoshi Itoh, Yoshiaki |
author_sort | Hasegawa, Itsuki |
collection | PubMed |
description | Disposition of amyloid β (Aβ) into the perivascular space of the cerebral cortex has been recently suggested as a major source of its clearance, and its disturbance may be involved in the pathogenesis of cerebral amyloid angiopathy and Alzheimer’s disease. Here, we explored the in vivo dynamics of Aβ in the perivascular space of anesthetized mice. Live images were obtained with two-photon microscopy through a closed cranial window. Either fluorescent-dye-labeled Aβ oligomers prepared freshly or Aβ fibrils after 6 days of incubation at 37 °C were placed over the cerebral cortex. Accumulation of Aβ was observed in the localized perivascular space of the penetrating arteries and veins. Transportation of the accumulated Aβ along the vessels was slow and associated with changes in shape. Aβ oligomers were transported smoothly and separately, whereas Aβ fibrils formed a mass and moved slowly. Parenchymal accumulation of Aβ oligomers, as well as Aβ fibrils along capillaries, increased gradually. In conclusion, we confirmed Aβ transportation between the cortical surface and the deeper parenchyma through the perivascular space that may be affected by the peptide polymerization. Facilitation of Aβ excretion through the system can be a key target in treating Alzheimer’s disease. |
format | Online Article Text |
id | pubmed-9223597 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92235972022-06-24 In Vivo Dynamic Movement of Polymerized Amyloid β in the Perivascular Space of the Cerebral Cortex in Mice Hasegawa, Itsuki Hirayoshi, Yoko Minatani, Shinobu Mino, Toshikazu Takeda, Akitoshi Itoh, Yoshiaki Int J Mol Sci Article Disposition of amyloid β (Aβ) into the perivascular space of the cerebral cortex has been recently suggested as a major source of its clearance, and its disturbance may be involved in the pathogenesis of cerebral amyloid angiopathy and Alzheimer’s disease. Here, we explored the in vivo dynamics of Aβ in the perivascular space of anesthetized mice. Live images were obtained with two-photon microscopy through a closed cranial window. Either fluorescent-dye-labeled Aβ oligomers prepared freshly or Aβ fibrils after 6 days of incubation at 37 °C were placed over the cerebral cortex. Accumulation of Aβ was observed in the localized perivascular space of the penetrating arteries and veins. Transportation of the accumulated Aβ along the vessels was slow and associated with changes in shape. Aβ oligomers were transported smoothly and separately, whereas Aβ fibrils formed a mass and moved slowly. Parenchymal accumulation of Aβ oligomers, as well as Aβ fibrils along capillaries, increased gradually. In conclusion, we confirmed Aβ transportation between the cortical surface and the deeper parenchyma through the perivascular space that may be affected by the peptide polymerization. Facilitation of Aβ excretion through the system can be a key target in treating Alzheimer’s disease. MDPI 2022-06-08 /pmc/articles/PMC9223597/ /pubmed/35742862 http://dx.doi.org/10.3390/ijms23126422 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hasegawa, Itsuki Hirayoshi, Yoko Minatani, Shinobu Mino, Toshikazu Takeda, Akitoshi Itoh, Yoshiaki In Vivo Dynamic Movement of Polymerized Amyloid β in the Perivascular Space of the Cerebral Cortex in Mice |
title | In Vivo Dynamic Movement of Polymerized Amyloid β in the Perivascular Space of the Cerebral Cortex in Mice |
title_full | In Vivo Dynamic Movement of Polymerized Amyloid β in the Perivascular Space of the Cerebral Cortex in Mice |
title_fullStr | In Vivo Dynamic Movement of Polymerized Amyloid β in the Perivascular Space of the Cerebral Cortex in Mice |
title_full_unstemmed | In Vivo Dynamic Movement of Polymerized Amyloid β in the Perivascular Space of the Cerebral Cortex in Mice |
title_short | In Vivo Dynamic Movement of Polymerized Amyloid β in the Perivascular Space of the Cerebral Cortex in Mice |
title_sort | in vivo dynamic movement of polymerized amyloid β in the perivascular space of the cerebral cortex in mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9223597/ https://www.ncbi.nlm.nih.gov/pubmed/35742862 http://dx.doi.org/10.3390/ijms23126422 |
work_keys_str_mv | AT hasegawaitsuki invivodynamicmovementofpolymerizedamyloidbintheperivascularspaceofthecerebralcortexinmice AT hirayoshiyoko invivodynamicmovementofpolymerizedamyloidbintheperivascularspaceofthecerebralcortexinmice AT minatanishinobu invivodynamicmovementofpolymerizedamyloidbintheperivascularspaceofthecerebralcortexinmice AT minotoshikazu invivodynamicmovementofpolymerizedamyloidbintheperivascularspaceofthecerebralcortexinmice AT takedaakitoshi invivodynamicmovementofpolymerizedamyloidbintheperivascularspaceofthecerebralcortexinmice AT itohyoshiaki invivodynamicmovementofpolymerizedamyloidbintheperivascularspaceofthecerebralcortexinmice |