Cargando…

A Study of Type II ɛ-PL Degrading Enzyme (pldII) in Streptomyces albulus through the CRISPRi System

ε-Poly-L-lysine (ε-PL) is a widely used antibacterial peptide polymerized of 25–35 L-lysine residues. The antibacterial effect of ε-PL is closely related to the polymerization degree. However, the mechanism of ε-PL degradation in S. albulus remains unclear. This study utilized the integrative plasmi...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qinyu, Chen, Xiaojia, Wu, Yuanjie, Chen, Zheng, Han, Yang, Zhou, Peng, Shi, Jiping, Zhao, Zhijun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9223678/
https://www.ncbi.nlm.nih.gov/pubmed/35743134
http://dx.doi.org/10.3390/ijms23126691
Descripción
Sumario:ε-Poly-L-lysine (ε-PL) is a widely used antibacterial peptide polymerized of 25–35 L-lysine residues. The antibacterial effect of ε-PL is closely related to the polymerization degree. However, the mechanism of ε-PL degradation in S. albulus remains unclear. This study utilized the integrative plasmid pSET152-based CRISPRi system to transcriptionally repress the ε-PL degrading enzyme (pldII). The expression of pldII is regulated by changing the recognition site of dCas9. Through the ε-PL bacteriostatic experiments of repression strains, it was found that the repression of pldII improves the antibacterial effect of the ε-PL product. The consecutive MALDI-TOF-MS results confirmed that the molecular weight distribution of the ε-PL was changed after repression. The repression strain S1 showed a particular peak with a polymerization degree of 44, and other repression strains also generated ε-PL with a polymerization degree of over 40. Furthermore, the homology modeling and substrate docking of pldII, a typical endo-type metallopeptidase, were performed to resolve the degradation mechanism of ε-PL in S. albulus. The hydrolysis of ε-PL within pldII, initiated from the N-terminus by two amino acid-binding residues, Thr194 and Glu281, led to varying levels of polymerization of ε-PL.