Cargando…
A Brief Survey on No-Reference Image Quality Assessment Methods for Magnetic Resonance Images
No-reference image quality assessment (NR-IQA) methods automatically and objectively predict the perceptual quality of images without access to a reference image. Therefore, due to the lack of pristine images in most medical image acquisition systems, they play a major role in supporting the examina...
Autores principales: | Stępień, Igor, Oszust, Mariusz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224540/ https://www.ncbi.nlm.nih.gov/pubmed/35735959 http://dx.doi.org/10.3390/jimaging8060160 |
Ejemplares similares
-
Fusion of Deep Convolutional Neural Networks for No-Reference Magnetic Resonance Image Quality Assessment
por: Stępień, Igor, et al.
Publicado: (2021) -
Interobserver variability in quality assessment of magnetic resonance images
por: Obuchowicz, Rafal, et al.
Publicado: (2020) -
Full-Reference Image Quality Assessment with Linear Combination of Genetically Selected Quality Measures
por: Oszust, Mariusz
Publicado: (2016) -
Magnetic Resonance Image Quality Assessment by Using Non-Maximum Suppression and Entropy Analysis
por: Obuchowicz, Rafał, et al.
Publicado: (2020) -
Functional magnetic resonance imaging and the brain: A brief review
por: Chow, Maggie S M, et al.
Publicado: (2017)