Cargando…
In Vivo Evaluation of 3D-Printed Silica-Based Bioactive Glass Scaffolds for Bone Regeneration
Bioactive glasses are often designed as porous implantable templates in which newly-formed bone can grow in three dimensions (3D). This research work aims to investigate the bone regenerative capability of silicate bioactive glass scaffolds produced by robocasting in comparison with powder and granu...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224601/ https://www.ncbi.nlm.nih.gov/pubmed/35735929 http://dx.doi.org/10.3390/jfb13020074 |
_version_ | 1784733407745409024 |
---|---|
author | Tulyaganov, Dilshat U. Fiume, Elisa Akbarov, Avzal Ziyadullaeva, Nigora Murtazaev, Saidazim Rahdar, Abbas Massera, Jonathan Verné, Enrica Baino, Francesco |
author_facet | Tulyaganov, Dilshat U. Fiume, Elisa Akbarov, Avzal Ziyadullaeva, Nigora Murtazaev, Saidazim Rahdar, Abbas Massera, Jonathan Verné, Enrica Baino, Francesco |
author_sort | Tulyaganov, Dilshat U. |
collection | PubMed |
description | Bioactive glasses are often designed as porous implantable templates in which newly-formed bone can grow in three dimensions (3D). This research work aims to investigate the bone regenerative capability of silicate bioactive glass scaffolds produced by robocasting in comparison with powder and granule-like materials (oxide system: 47.5SiO(2)-10Na(2)O-10K(2)O-10MgO-20CaO-2.5P(2)O(5), mol.%). Morphological and compositional analyses performed by scanning electron microscopy (SEM), combined with energy dispersive spectroscopy (EDS) after the bioactivity studies in a simulated body fluid (SBF) confirmed the apatite-forming ability of the scaffolds, which is key to allowing bone-bonding in vivo. The scaffolds exhibited a clear osteogenic effect upon implantation in rabbit femur and underwent gradual resorption followed by ossification. Full resorption in favor of new bone growth was achieved within 6 months. Osseous defect healing was accompanied by the formation of mature bone with abundant osteocytes and bone marrow cells. These in vivo results support the scaffold’s suitability for application in bone tissue engineering and show promise for potential translation to clinical assessment. |
format | Online Article Text |
id | pubmed-9224601 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92246012022-06-24 In Vivo Evaluation of 3D-Printed Silica-Based Bioactive Glass Scaffolds for Bone Regeneration Tulyaganov, Dilshat U. Fiume, Elisa Akbarov, Avzal Ziyadullaeva, Nigora Murtazaev, Saidazim Rahdar, Abbas Massera, Jonathan Verné, Enrica Baino, Francesco J Funct Biomater Article Bioactive glasses are often designed as porous implantable templates in which newly-formed bone can grow in three dimensions (3D). This research work aims to investigate the bone regenerative capability of silicate bioactive glass scaffolds produced by robocasting in comparison with powder and granule-like materials (oxide system: 47.5SiO(2)-10Na(2)O-10K(2)O-10MgO-20CaO-2.5P(2)O(5), mol.%). Morphological and compositional analyses performed by scanning electron microscopy (SEM), combined with energy dispersive spectroscopy (EDS) after the bioactivity studies in a simulated body fluid (SBF) confirmed the apatite-forming ability of the scaffolds, which is key to allowing bone-bonding in vivo. The scaffolds exhibited a clear osteogenic effect upon implantation in rabbit femur and underwent gradual resorption followed by ossification. Full resorption in favor of new bone growth was achieved within 6 months. Osseous defect healing was accompanied by the formation of mature bone with abundant osteocytes and bone marrow cells. These in vivo results support the scaffold’s suitability for application in bone tissue engineering and show promise for potential translation to clinical assessment. MDPI 2022-06-05 /pmc/articles/PMC9224601/ /pubmed/35735929 http://dx.doi.org/10.3390/jfb13020074 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tulyaganov, Dilshat U. Fiume, Elisa Akbarov, Avzal Ziyadullaeva, Nigora Murtazaev, Saidazim Rahdar, Abbas Massera, Jonathan Verné, Enrica Baino, Francesco In Vivo Evaluation of 3D-Printed Silica-Based Bioactive Glass Scaffolds for Bone Regeneration |
title | In Vivo Evaluation of 3D-Printed Silica-Based Bioactive Glass Scaffolds for Bone Regeneration |
title_full | In Vivo Evaluation of 3D-Printed Silica-Based Bioactive Glass Scaffolds for Bone Regeneration |
title_fullStr | In Vivo Evaluation of 3D-Printed Silica-Based Bioactive Glass Scaffolds for Bone Regeneration |
title_full_unstemmed | In Vivo Evaluation of 3D-Printed Silica-Based Bioactive Glass Scaffolds for Bone Regeneration |
title_short | In Vivo Evaluation of 3D-Printed Silica-Based Bioactive Glass Scaffolds for Bone Regeneration |
title_sort | in vivo evaluation of 3d-printed silica-based bioactive glass scaffolds for bone regeneration |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224601/ https://www.ncbi.nlm.nih.gov/pubmed/35735929 http://dx.doi.org/10.3390/jfb13020074 |
work_keys_str_mv | AT tulyaganovdilshatu invivoevaluationof3dprintedsilicabasedbioactiveglassscaffoldsforboneregeneration AT fiumeelisa invivoevaluationof3dprintedsilicabasedbioactiveglassscaffoldsforboneregeneration AT akbarovavzal invivoevaluationof3dprintedsilicabasedbioactiveglassscaffoldsforboneregeneration AT ziyadullaevanigora invivoevaluationof3dprintedsilicabasedbioactiveglassscaffoldsforboneregeneration AT murtazaevsaidazim invivoevaluationof3dprintedsilicabasedbioactiveglassscaffoldsforboneregeneration AT rahdarabbas invivoevaluationof3dprintedsilicabasedbioactiveglassscaffoldsforboneregeneration AT masserajonathan invivoevaluationof3dprintedsilicabasedbioactiveglassscaffoldsforboneregeneration AT verneenrica invivoevaluationof3dprintedsilicabasedbioactiveglassscaffoldsforboneregeneration AT bainofrancesco invivoevaluationof3dprintedsilicabasedbioactiveglassscaffoldsforboneregeneration |