Cargando…
Exploring and Identifying Prognostic Phenotypes of Patients with Heart Failure Guided by Explainable Machine Learning
Identifying patient prognostic phenotypes facilitates precision medicine. This study aimed to explore phenotypes of patients with heart failure (HF) corresponding to prognostic condition (risk of mortality) and identify the phenotype of new patients by machine learning (ML). A unsupervised ML was ap...
Autores principales: | Zhou, Xue, Nakamura, Keijiro, Sahara, Naohiko, Asami, Masako, Toyoda, Yasutake, Enomoto, Yoshinari, Hara, Hidehiko, Noro, Mahito, Sugi, Kaoru, Moroi, Masao, Nakamura, Masato, Huang, Ming, Zhu, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224610/ https://www.ncbi.nlm.nih.gov/pubmed/35743806 http://dx.doi.org/10.3390/life12060776 |
Ejemplares similares
-
Risk of Mortality Prediction Involving Time-Varying Covariates for Patients with Heart Failure Using Deep Learning
por: Nakamura, Keijiro, et al.
Publicado: (2022) -
Impact of right atrial structural remodeling on recurrence after ablation for atrial fibrillation
por: Takagi, Takahito, et al.
Publicado: (2021) -
The Association of Cardio-Ankle Vascular Index (CAVI) with Biatrial Remodeling in Atrial Fibrillation
por: Nakamura, Keijiro, et al.
Publicado: (2021) -
Heterogeneous scar with functional block in ventricular tachycardia circuit: Visualization of moderate high-density mapping
por: Sahara, Naohiko, et al.
Publicado: (2021) -
Outcomes of Brugada Syndrome Patients with Coronary Artery Vasospasm
por: Kujime, Shingo, et al.
Publicado: (2017)